Gareth H Mckinley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1592063/publications.pdf Version: 2024-02-01

		2675	4015
344	35,054	95	176
papers	citations	h-index	g-index
353	353	353	23535
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Designing Superoleophobic Surfaces. Science, 2007, 318, 1618-1622.	12.6	2,610
2	Superhydrophobic Carbon Nanotube Forests. Nano Letters, 2003, 3, 1701-1705.	9.1	1,527
3	A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Progress in Polymer Science, 2011, 36, 1697-1753.	24.7	1,109
4	Robust omniphobic surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18200-18205.	7.1	1,015
5	Droplet mobility on lubricant-impregnated surfaces. Soft Matter, 2013, 9, 1772-1780.	2.7	810
6	New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology, 2008, 52, 1427-1458.	2.6	787
7	Relationships between Water Wettability and Ice Adhesion. ACS Applied Materials & Interfaces, 2010, 2, 3100-3110.	8.0	655
8	A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. Journal of Colloid and Interface Science, 2009, 339, 208-216.	9.4	477
9	Elasto-capillary thinning and breakup of model elastic liquids. Journal of Rheology, 2001, 45, 115-138.	2.6	443
10	FILAMENT-STRETCHINGRHEOMETRY OFCOMPLEXFLUIDS. Annual Review of Fluid Mechanics, 2002, 34, 375-415.	25.0	422
11	Nanotextured Silica Surfaces with Robust Superhydrophobicity and Omnidirectional Broadband Supertransmissivity. ACS Nano, 2012, 6, 3789-3799.	14.6	378
12	Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. Journal of Applied Physics, 2008, 103, .	2.5	367
13	Exploiting Topographical Texture To Impart Icephobicity. ACS Nano, 2010, 4, 7048-7052.	14.6	355
14	Fabrics with Tunable Oleophobicity. Advanced Materials, 2009, 21, 2190-2195.	21.0	351
15	<i>Helicobacter pylori</i> moves through mucus by reducing mucin viscoelasticity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14321-14326.	7.1	347
16	Optimal Design of Permeable Fiber Network Structures for Fog Harvesting. Langmuir, 2013, 29, 13269-13277.	3.5	330
17	High-performance elastomeric nanocomposites via solvent-exchange processing. Nature Materials, 2007, 6, 76-83.	27.5	318
18	Shear-Thinning Nanocomposite Hydrogels for the Treatment of Hemorrhage. ACS Nano, 2014, 8, 9833-9842.	14.6	318

2

#	Article	IF	CITATIONS
19	Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration. Physics of Fluids, 2006, 18, 043101.	4.0	317
20	Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices. IEEE Transactions on Biomedical Engineering, 2006, 53, 2075-2083.	4.2	313
21	Design Parameters for Superhydrophobicity and Superoleophobicity. MRS Bulletin, 2008, 33, 752-758.	3.5	308
22	Anti-fatigue-fracture hydrogels. Science Advances, 2019, 5, eaau8528.	10.3	305
23	How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. Journal of Rheology, 2000, 44, 653-670.	2.6	304
24	The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries. Journal of Non-Newtonian Fluid Mechanics, 2005, 129, 1-22.	2.4	297
25	Elastic Instability and Curved Streamlines. Physical Review Letters, 1996, 77, 2459-2462.	7.8	292
26	Capillary Break-up Rheometry of Low-Viscosity Elastic Fluids. Applied Rheology, 2005, 15, 12-27.	5.2	283
27	Formation of beads-on-a-string structures during break-up of viscoelastic filaments. Nature Physics, 2010, 6, 625-631.	16.7	274
28	Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheologica Acta, 2010, 49, 191-212.	2.4	273
29	Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces. Soft Matter, 2016, 12, 1938-1963.	2.7	272
30	Rheology of Gastric Mucin Exhibits a pH-Dependent Solâ^'Gel Transition. Biomacromolecules, 2007, 8, 1580-1586.	5.4	250
31	Rheological and geometric scaling of purely elastic flow instabilities. Journal of Non-Newtonian Fluid Mechanics, 1996, 67, 19-47.	2.4	247
32	How dilute are dilute solutions in extensional flows?. Journal of Rheology, 2006, 50, 849-881.	2.6	242
33	The beads-on-string structure of viscoelastic threads. Journal of Fluid Mechanics, 2006, 556, 283.	3.4	222
34	Rheology and Dynamics of Associative Polymers in Shear and Extension:Â Theory and Experiments. Macromolecules, 2006, 39, 1981-1999.	4.8	219
35	Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricated contraction geometries. Journal of Non-Newtonian Fluid Mechanics, 2007, 143, 170-191.	2.4	219
36	Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress). Journal of Rheology, 2013, 57, 27-70.	2.6	218

#	Article	IF	CITATIONS
37	Study of Factors Governing Oil–Water Separation Process Using TiO ₂ Films Prepared by Spray Deposition of Nanoparticle Dispersions. ACS Applied Materials & Interfaces, 2014, 6, 13422-13429.	8.0	217
38	Definitions of entanglement spacing and time constants in the tube model. Journal of Rheology, 2003, 47, 809-818.	2.6	216
39	Microfluidic rheometry. Mechanics Research Communications, 2009, 36, 110-120.	1.8	213
40	Thermomechanical Properties of Poly(methyl methacrylate)s Containing Tethered and Untethered Polyhedral Oligomeric Silsesquioxanes. Macromolecules, 2004, 37, 8992-9004.	4.8	209
41	High shear rate viscometry. Rheologica Acta, 2008, 47, 621-642.	2.4	208
42	Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform. Journal of Rheology, 2005, 49, 585-606.	2.6	203
43	Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks. Nano Letters, 2014, 14, 2210-2218.	9.1	201
44	Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion. Soft Matter, 2007, 3, 634.	2.7	192
45	Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20120284.	2.1	191
46	A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid. Soft Matter, 2014, 10, 6619-6644.	2.7	183
47	Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces. Polymer, 2011, 52, 3209-3218.	3.8	179
48	Metal-coordination: using one of nature's tricks to control soft material mechanics. Journal of Materials Chemistry B, 2014, 2, 2467-2472.	5.8	178
49	The axisymmetric contraction–expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop. Journal of Non-Newtonian Fluid Mechanics, 2001, 98, 33-63.	2.4	174
50	Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nature Communications, 2014, 5, 4120.	12.8	173
51	Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces. Scientific Reports, 2014, 4, 4158.	3.3	173
52	Nonlinear dynamics of viscoelastic flow in axisymmetric abrupt contractions. Journal of Fluid Mechanics, 1991, 223, 411.	3.4	167
53	Toughened poly(methyl methacrylate) nanocomposites by incorporating polyhedral oligomeric silsesquioxanes. Polymer, 2006, 47, 299-309.	3.8	164
54	Wolfgang von Ohnesorge. Physics of Fluids, 2011, 23, .	4.0	163

#	Article	IF	CITATIONS
55	Modeling the rheology of polyisobutylene solutions. Journal of Rheology, 1990, 34, 705-748.	2.6	162
56	Rheology of globular proteins: apparent yield stress, high shear rate viscosity and interfacial viscoelasticity of bovine serum albumin solutions. Soft Matter, 2011, 7, 5150.	2.7	160
57	Extensional Rheometry of Entangled Solutions. Macromolecules, 2002, 35, 10131-10148.	4.8	154
58	Shear and Extensional Rheology of Cellulose/Ionic Liquid Solutions. Biomacromolecules, 2012, 13, 1688-1699.	5.4	154
59	Miscibility and viscoelastic properties of acrylic polyhedral oligomeric silsesquioxane–poly(methyl) Tj ETQq1 1	0.784314 3.8	4 rg <mark>BT</mark> /Overio
60	Marangoni convection in droplets on superhydrophobic surfaces. Journal of Fluid Mechanics, 2009, 624, 101-123.	3.4	149
61	Power law gels at finite strains: The nonlinear rheology of gluten gels. Journal of Rheology, 2008, 52, 417-449.	2.6	146
62	Sustainable Drag Reduction in Turbulent Taylor-Couette Flows by Depositing Sprayable Superhydrophobic Surfaces. Physical Review Letters, 2015, 114, 014501.	7.8	145
63	The role of end-effects on measurements of extensional viscosity in filament stretching rheometers. Journal of Non-Newtonian Fluid Mechanics, 1996, 64, 229-267.	2.4	144
64	An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. Journal of Rheology, 2001, 45, 83-114.	2.6	142
65	Complex Fluids and Hydraulic Fracturing. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 415-453.	6.8	141
66	Elongational viscosity of monodisperse and bidisperse polystyrene melts. Journal of Rheology, 2006, 50, 453-476.	2.6	139
67	Icephobic Surfaces Induced by Interfacial Nonfrozen Water. ACS Applied Materials & Interfaces, 2017, 9, 4202-4214.	8.0	138
68	Observations on the elastic instability in cone-and-plate and parallel-plate flows of a polyisobutylene Boger fluid. Journal of Non-Newtonian Fluid Mechanics, 1991, 40, 201-229.	2.4	137
69	Controlling the Location and Spatial Extent of Nanobubbles Using Hydrophobically Nanopatterned Surfaces. Nano Letters, 2005, 5, 1751-1756.	9.1	135
70	Large amplitude oscillatory shear flow of gluten dough: A model power-law gel. Journal of Rheology, 2011, 55, 627-654.	2.6	135
71	Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers. Physics of Fluids, 2005, 17, 071704.	4.0	134
72	Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 2006, 137, 137-148.	2.4	134

#	Article	IF	CITATIONS
73	A network scission model for wormlike micellar solutions. Journal of Non-Newtonian Fluid Mechanics, 2007, 144, 122-139.	2.4	133
74	Relaxation of dilute polymer solutions following extensional flow1Dedicated to the memory of Professor Gianni Astarita.1. Journal of Non-Newtonian Fluid Mechanics, 1998, 76, 79-110.	2.4	132
75	Extensional flow of a polystyrene Boger fluid through a 4â€^:â€^1â€^:â€^4 axisymmetric contraction/expansion. Journal of Non-Newtonian Fluid Mechanics, 1999, 86, 61-88.	2.4	131
76	Stress relaxation and elastic decohesion of viscoelastic polymer solutions in extensional flow. Journal of Non-Newtonian Fluid Mechanics, 1996, 67, 49-76.	2.4	130
77	Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions. Journal of Non-Newtonian Fluid Mechanics, 2006, 133, 73-90.	2.4	129
78	Scale Dependence of Omniphobic Mesh Surfaces. Langmuir, 2010, 26, 4027-4035.	3.5	129
79	Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matter, 2013, 9, 5691.	2.7	127
80	On secondary loops in LAOS via self-intersection of Lissajous–Bowditch curves. Rheologica Acta, 2010, 49, 213-219.	2.4	126
81	The Considère condition and rapid stretching of linear and branched polymer melts. Journal of Rheology, 1999, 43, 1195-1212.	2.6	123
82	A Rheological Study of the Association and Dynamics of MUC5AC Gels. Biomacromolecules, 2017, 18, 3654-3664.	5.4	122
83	The normal stress behaviour of suspensions with viscoelastic matrix fluids. Rheologica Acta, 2002, 41, 61-76.	2.4	120
84	Fiber coating with surfactant solutions. Physics of Fluids, 2002, 14, 4055-4068.	4.0	119
85	Assessing the Accuracy of Contact Angle Measurements for Sessile Drops on Liquid-Repellent Surfaces. Langmuir, 2011, 27, 13582-13589.	3.5	119
86	The wake instability in viscoelastic flow past confined circular cylinders. Philosophical Transactions of the Royal Society: Physical and Engineering Sciences, 1993, 344, 265-304.	1.0	117
87	An experimental investigation of negative wakes behind spheres settling in a shear-thinning viscoelastic fluid. Rheologica Acta, 1998, 37, 307-327.	2.4	117
88	Optimized Cross-Slot Flow Geometry for Microfluidic Extensional Rheometry. Physical Review Letters, 2012, 109, 128301.	7.8	116
89	Microfluidic extensional rheometry using a hyperbolic contraction geometry. Rheologica Acta, 2013, 52, 529-546.	2.4	113
90	Viscous flow through microfabricated hyperbolic contractions. Experiments in Fluids, 2007, 43, 437-451.	2.4	111

#	Article	IF	CITATIONS
91	Studying the effects of elongational properties on atomization of weakly viscoelastic solutions using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER). Journal of Non-Newtonian Fluid Mechanics, 2015, 222, 171-189.	2.4	109
92	Microscopic and Macroscopic Structure of the Precursor Layer in Spreading Viscous Drops. Physical Review Letters, 2003, 91, 196104.	7.8	107
93	Numerical simulation of extensional deformations of viscoelastic liquid bridges in filament stretching devices. Journal of Non-Newtonian Fluid Mechanics, 1998, 74, 47-88.	2.4	106
94	Rheology of joint fluid in total knee arthroplasty patients. Journal of Orthopaedic Research, 2002, 20, 1157-1163.	2.3	98
95	Ex vivo rheology of spider silk. Journal of Experimental Biology, 2006, 209, 4355-4362.	1.7	97
96	Dynamics of particle migration in channel flow of viscoelastic fluids. Journal of Fluid Mechanics, 2015, 785, 486-505.	3.4	96
97	Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device. Soft Matter, 2012, 8, 536-555.	2.7	95
98	Spiral instabilities in the flow of highly elastic fluids between rotating parallel disks. Journal of Fluid Mechanics, 1994, 271, 173-218.	3.4	93
99	Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface. Science Advances, 2016, 2, e1600686.	10.3	92
100	Evaporatively-driven Marangoni instabilities of volatile liquid films spreading on thermally conductive substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 409-423.	4.7	91
101	Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets. Journal of Fluid Mechanics, 2010, 665, 46-56.	3.4	90
102	Simulations of extensional flow in microrheometric devices. Microfluidics and Nanofluidics, 2008, 5, 809-826.	2.2	89
103	Ultrathin high-resolution flexographic printing using nanoporous stamps. Science Advances, 2016, 2, e1601660.	10.3	89
104	Visible light guided manipulation of liquid wettability on photoresponsive surfaces. Nature Communications, 2017, 8, 14968.	12.8	89
105	Dispersity and spinnability: Why highly polydisperse polymer solutions are desirable for electrospinning. Polymer, 2014, 55, 4920-4931.	3.8	88
106	Linker-free grafting of fluorinated polymeric cross-linked network bilayers for durable reduction of ice adhesion. Materials Horizons, 2015, 2, 91-99.	12.2	88
107	A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. Journal of Rheology, 2014, 58, 1751-1788.	2.6	86
108	Extensional stress growth and stress relaxation in entangled polymer solutions. Journal of Rheology, 2003, 47, 269-290.	2.6	83

#	Article	IF	CITATIONS
109	High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. Journal of Fluid Mechanics, 2016, 801, 670-703.	3.4	83
110	The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer. Soft Matter, 2015, 11, 3251-3270.	2.7	82
111	The sedimentation of a sphere through an elastic fluid. Part 1. Steady motion. Journal of Non-Newtonian Fluid Mechanics, 1995, 60, 225-257.	2.4	81
112	Elastic instabilities in planar elongational flow of monodisperse polymer solutions. Scientific Reports, 2016, 6, 33029.	3.3	80
113	Extensional deformation, stress relaxation and necking failure of viscoelastic filaments. Journal of Non-Newtonian Fluid Mechanics, 1998, 79, 469-501.	2.4	79
114	Mapping thixo-elasto-visco-plastic behavior. Rheologica Acta, 2017, 56, 195-210.	2.4	79
115	Surface Tension of Seawater. Journal of Physical and Chemical Reference Data, 2014, 43, .	4.2	78
116	Biphasic Electrode Suspensions for Liâ€lon Semiâ€solid Flow Cells with High Energy Density, Fast Charge Transport, and Lowâ€Dissipation Flow. Advanced Energy Materials, 2015, 5, 1500535.	19.5	76
117	Superoleophobic Surfaces through Control of Sprayed-on Stochastic Topography. Langmuir, 2012, 28, 9834-9841.	3.5	75
118	Multifunctional Inverted Nanocone Arrays for Nonâ€Wetting, Selfâ€Cleaning Transparent Surface with High Mechanical Robustness. Small, 2014, 10, 2487-2494.	10.0	75
119	Thermokinematic memory and the thixotropic elasto-viscoplasticity of waxy crude oils. Journal of Rheology, 2017, 61, 427-454.	2.6	75
120	Gap-dependent microrheometry of complex liquids. Journal of Non-Newtonian Fluid Mechanics, 2004, 124, 1-10.	2.4	74
121	Investigating the stability of viscoelastic stagnation flows in T-shaped microchannels. Journal of Non-Newtonian Fluid Mechanics, 2009, 163, 9-24.	2.4	73
122	Wormlike micellar solutions: II. Comparison between experimental data and scission model predictions. Journal of Rheology, 2010, 54, 881-913.	2.6	73
123	Elastic Turbulence in Shear Banding Wormlike Micelles. Physical Review Letters, 2010, 104, 178303.	7.8	73
124	Rheo-PIV Analysis of the Yielding and Flow of Model Waxy Crude Oils. Energy & Fuels, 2011, 25, 3040-3052.	5.1	72
125	Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction. Physical Chemistry Chemical Physics, 2012, 14, 6013.	2.8	72
126	Scaling in pinch-off of generalized Newtonian fluids. Journal of Non-Newtonian Fluid Mechanics, 2003, 113, 1-27.	2.4	69

#	Article	IF	CITATIONS
127	Size dependence of microprobe dynamics during gelation of a discotic colloidal clay. Journal of Rheology, 2011, 55, 273-299.	2.6	69
128	Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot device. Biomicrofluidics, 2013, 7, 044108.	2.4	68
129	Extensional deformation of Newtonian liquid bridges. Physics of Fluids, 1996, 8, 2568-2579.	4.0	67
130	Nonlinear viscoelastic biomaterials: meaningful characterization and engineering inspiration. Integrative and Comparative Biology, 2009, 49, 40-50.	2.0	67
131	Interfacial viscoelasticity, yielding and creep ringing of globular protein–surfactant mixtures. Soft Matter, 2011, 7, 7623.	2.7	64
132	Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: Effects of surfactant concentration and ionic environment. Physical Review E, 2012, 85, 031502.	2.1	64
133	Time-resolved dynamics of the yielding transition in soft materials. Journal of Non-Newtonian Fluid Mechanics, 2019, 264, 117-134.	2.4	64
134	Cervical Mucus Properties Stratify Risk for Preterm Birth. PLoS ONE, 2013, 8, e69528.	2.5	63
135	Fog Water Collection Effectiveness: Mesh Intercomparisons. Aerosol and Air Quality Research, 2018, 18, 270-283.	2.1	63
136	Thermal Annealing Treatment to Achieve Switchable and Reversible Oleophobicity on Fabrics. Langmuir, 2009, 25, 13625-13632.	3.5	62
137	Dynamics of weakly strain-hardening fluids in filament stretching devices. Journal of Non-Newtonian Fluid Mechanics, 2000, 89, 1-43.	2.4	61
138	Modeling the inhomogeneous response and formation of shear bands in steady and transient flows of entangled liquids. Journal of Rheology, 2008, 52, 591-623.	2.6	61
139	Preferential Association of Segment Blocks in Polyurethane Nanocomposites. Macromolecules, 2006, 39, 7030-7036.	4.8	60
140	Carbon Nanotube–Magnetite Composites, With Applications to Developing Unique Magnetorheological Fluids. Journal of Fluids Engineering, Transactions of the ASME, 2007, 129, 429-437.	1.5	60
141	â€~Gobbling drops': the jetting–dripping transition in flows of polymer solutions. Journal of Fluid Mechanics, 2009, 636, 5-40.	3.4	60
142	In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization. Nature Communications, 2021, 12, 667.	12.8	60
143	Microstructural Rearrangements and their Rheological Implications in a Model Thixotropic Elastoviscoplastic Fluid. Physical Review Letters, 2017, 118, 048003.	7.8	59
144	Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow. Physics of Fluids, 2019, 31, .	4.0	59

#	Article	IF	CITATIONS
145	Report on the VIIIth international workshop on numerical methods in viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics, 1994, 52, 407-413.	2.4	58
146	Tribo-Rheometry: From Gap-Dependent Rheology to Tribology. Tribology Letters, 2004, 17, 327-335.	2.6	58
147	Fluoroalkylated Silicon-Containing Surfacesâ^'Estimation of Solid-Surface Energy. ACS Applied Materials & Interfaces, 2010, 2, 3544-3554.	8.0	58
148	Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions. Journal of Rheology, 2013, 57, 1411-1428.	2.6	57
149	Ligament Mediated Fragmentation of Viscoelastic Liquids. Physical Review Letters, 2016, 117, 154502.	7.8	57
150	Fabrication and Wettability Study of WO3 Coated Photocatalytic Membrane for Oil-Water Separation: A Comparative Study with ZnO Coated Membrane. Scientific Reports, 2017, 7, 1686.	3.3	57
151	Characteristics of Electrorheological Responses in an Emulsion System. Journal of Colloid and Interface Science, 1997, 195, 101-113.	9.4	56
152	Shear-banding in surfactant wormlike micelles: elastic instabilities and wall slip. Soft Matter, 2012, 8, 2535.	2.7	56
153	Simultaneous Rheoelectric Measurements of Strongly Conductive Complex Fluids. Physical Review Applied, 2016, 6, .	3.8	56
154	The unsteady motion of a sphere in a viscoelastic fluid. Journal of Rheology, 1994, 38, 377-403.	2.6	55
155	Sedimentation of a sphere near a plane wall: weak non-Newtonian and inertial effects. Journal of Non-Newtonian Fluid Mechanics, 1996, 63, 201-233.	2.4	55
156	Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers. Soft Matter, 2011, 7, 9933.	2.7	55
157	Microrheometry of sub-nanolitre biopolymer samples: non-Newtonian flow phenomena of carnivorous plant mucilage. Soft Matter, 2011, 7, 10889.	2.7	54
158	Self-similar spiral instabilities in elastic flows between a cone and a plate. Journal of Fluid Mechanics, 1995, 285, 123.	3.4	53
159	Hydrodynamics control shear-induced pattern formation in attractive suspensions. Proceedings of the United States of America, 2019, 116, 12193-12198.	7.1	53
160	Experimental investigation of nanofluid shear and longitudinal viscosities. Applied Physics Letters, 2008, 92, 244107.	3.3	52
161	Using filament stretching rheometry to predict strand formation and "processability" in adhesives and other non-Newtonian fluids. Rheologica Acta, 2000, 39, 321-337.	2.4	51
162	Adaptive energy-absorbing materials using field-responsive fluid-impregnated cellular solids. Smart Materials and Structures, 2007, 16, 106-113.	3.5	51

#	Article	IF	CITATIONS
163	Cavity flows of elastic liquids: Two-dimensional flows. Physics of Fluids, 1997, 9, 3123-3140.	4.0	50
164	Deficiencies of FENE dumbbell models in describing the rapid stretching of dilute polymer solutions. Journal of Rheology, 2001, 45, 721-758.	2.6	50
165	Quantitative prediction of the viscoelastic instability in cone-and-plate flow of a Boger fluid using a multi-mode Giesekus model. Journal of Non-Newtonian Fluid Mechanics, 1994, 54, 351-377.	2.4	49
166	Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear. Rheologica Acta, 2012, 51, 395-411.	2.4	49
167	Quantification of feather structure, wettability and resistance to liquid penetration. Journal of the Royal Society Interface, 2014, 11, 20140287.	3.4	49
168	Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows. Physics of Fluids, 2017, 29, .	4.0	49
169	Describing the firmness, springiness and rubberiness of food gels using fractional calculus. Part I: Theoretical framework. Food Hydrocolloids, 2017, 62, 311-324.	10.7	48
170	A comparison of the stress and birefringence growth of dilute, semi-dilute and concentrated polymer solutions in uniaxial extensional flows. Journal of Non-Newtonian Fluid Mechanics, 2002, 108, 275-290.	2.4	47
171	The flexure-based microgap rheometer (FMR). Journal of Rheology, 2006, 50, 883-905.	2.6	47
172	Probing shear-banding transitions of the VCM model for entangled wormlike micellar solutions using large amplitude oscillatory shear (LAOS) deformations. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 1462-1472.	2.4	47
173	Interplay between elastic instabilities and shear-banding: three categories of Taylor–Couette flows and beyond. Soft Matter, 2012, 8, 10072.	2.7	47
174	Scalable and durable polymeric icephobic and hydrate-phobic coatings. Soft Matter, 2018, 14, 3443-3454.	2.7	47
175	Plastron Regeneration on Submerged Superhydrophobic Surfaces Using In Situ Gas Generation by Chemical Reaction. ACS Applied Materials & Interfaces, 2018, 10, 33684-33692.	8.0	47
176	On the measured current in electrospinning. Journal of Applied Physics, 2010, 107, 044306.	2.5	46
177	Examination of wettability and surface energy in fluorodecyl POSS/polymer blends. Soft Matter, 2011, 7, 10122.	2.7	46
178	Spatially resolved quantitative rheo-optics of complex fluids in a microfluidic device. Journal of Rheology, 2011, 55, 1127-1159.	2.6	46
179	Investigation into the Formation and Adhesion of Cyclopentane Hydrates on Mechanically Robust Vapor-Deposited Polymeric Coatings. Langmuir, 2015, 31, 6186-6196.	3.5	46
180	Stable Wettability Control of Nanoporous Microstructures by iCVD Coating of Carbon Nanotubes. ACS Applied Materials & Interfaces, 2017, 9, 43287-43299.	8.0	46

#	Article	IF	CITATIONS
181	Extensional flow of wormlike micellar solutions. Chemical Engineering Science, 2009, 64, 4588-4596.	3.8	43
182	Designing Durable Vaporâ€Đeposited Surfaces for Reduced Hydrate Adhesion. Advanced Materials Interfaces, 2015, 2, 1500003.	3.7	43
183	The Dynamic Compressive Response of an Open-Cell Foam Impregnated With a Non-Newtonian Fluid. Journal of Applied Mechanics, Transactions ASME, 2009, 76, .	2.2	42
184	Visualization of microscale particle focusing in diluted and whole blood using particle trajectory analysis. Lab on A Chip, 2012, 12, 2199.	6.0	42
185	A canonical framework for modeling elasto-viscoplasticity in complex fluids. Journal of Non-Newtonian Fluid Mechanics, 2019, 265, 116-132.	2.4	42
186	Cavity flows of elastic liquids: Purely elastic instabilities. Physics of Fluids, 1998, 10, 1058-1070.	4.0	41
187	Thin films in partial wetting: stability, dewetting and coarsening. Journal of Fluid Mechanics, 2018, 845, 642-681.	3.4	41
188	An intriguing empirical rule for computing the first normal stress difference from steady shear viscosity data for concentrated polymer solutions and melts. Rheologica Acta, 2012, 51, 487-495.	2.4	40
189	Probing hydrogen bond interactions in a shear thickening polysaccharide using nonlinear shear and extensional rheology. Carbohydrate Polymers, 2015, 123, 136-145.	10.2	40
190	Quantifying the consistency and rheology of liquid foods using fractional calculus. Food Hydrocolloids, 2017, 69, 242-254.	10.7	40
191	Nonlinear Viscoelasticity and Generalized Failure Criterion for Polymer Gels. ACS Macro Letters, 2017, 6, 663-667.	4.8	40
192	Inhomogeneous transient uniaxial extensional rheometry. Journal of Rheology, 2002, 46, 1419-1443.	2.6	39
193	Linear to Non-linear Rheology of Wheat Flour Dough. Applied Rheology, 2006, 16, 265-274.	5.2	39
194	Potential "ways of thinking―about the shear-banding phenomenon. Soft Matter, 2012, 8, 910-922.	2.7	39
195	A low-dissipation, pumpless, gravity-induced flow battery. Energy and Environmental Science, 2016, 9, 1760-1770.	30.8	39
196	On controlling the kinematics of a filament stretching rheometer using a real-time active control mechanism. Journal of Non-Newtonian Fluid Mechanics, 1999, 87, 307-335.	2.4	38
197	From ultra-soft slime to hard Â-keratins: The many lives of intermediate filaments. Integrative and Comparative Biology, 2009, 49, 32-39.	2.0	38
198	Reversible Switching of the Shear Modulus of Photoresponsive Liquidâ€Crystalline Polymers. Angewandte Chemie - International Edition, 2009, 48, 3494-3498.	13.8	38

#	Article	IF	CITATIONS
199	Magnetorheology in an aging, yield stress matrix fluid. Rheologica Acta, 2012, 51, 579-593.	2.4	38
200	Instabilities in stagnation point flows of polymer solutions. Physics of Fluids, 2013, 25, .	4.0	38
201	Thermal delay of drop coalescence. Journal of Fluid Mechanics, 2017, 833, .	3.4	38
202	A generalised Phan–Thien—Tanner model. Journal of Non-Newtonian Fluid Mechanics, 2019, 269, 88-99.	2.4	38
203	Low-cost manganese dioxide semi-solid electrode for flow batteries. Joule, 2021, 5, 2934-2954.	24.0	38
204	Pressure-driven flow of wormlike micellar solutions in rectilinear microchannels. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 180-193.	2.4	37
205	Controllable adhesion using field-activated fluids. Physics of Fluids, 2011, 23, .	4.0	37
206	Wormlike micellar solutions: III. VCM model predictions in steady and transient shearing flows. Journal of Non-Newtonian Fluid Mechanics, 2014, 211, 70-83.	2.4	37
207	Describing the firmness, springiness and rubberiness of food gels using fractional calculus. Part II: Measurements on semi-hard cheese. Food Hydrocolloids, 2017, 62, 325-339.	10.7	37
208	The sedimentation of a sphere through an elastic fluid Part 2. Transient motion. Journal of Non-Newtonian Fluid Mechanics, 1996, 65, 17-46.	2.4	36
209	The effects of viscoelasticity on the transient motion of a sphere in a shear-thinning fluid. Journal of Rheology, 1997, 41, 103-128.	2.6	36
210	Stability of planar stagnation flow of a highly viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics, 1997, 72, 1-29.	2.4	36
211	Slippage and migration in Taylor–Couette flow of a model for dilute wormlike micellar solutions. Journal of Non-Newtonian Fluid Mechanics, 2006, 136, 79-92.	2.4	36
212	Observing the chain stretch transition in a highly entangled polyisoprene melt using transient extensional rheometry. Journal of Rheology, 2009, 53, 1327-1346.	2.6	35
213	Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method. Journal of Non-Newtonian Fluid Mechanics, 2019, 266, 80-94.	2.4	35
214	Non-isothermal modification of purely elastic flow instabilities in torsional flows of polymeric fluids. Physics of Fluids, 2001, 13, 382-396.	4.0	34
215	Coating flows of non-Newtonian fluids: weakly and strongly elastic limits. Journal of Engineering Mathematics, 2008, 60, 17-41.	1.2	34
216	Geometric optimization of riblet-textured surfaces for drag reduction in laminar boundary layer flows. Physics of Fluids, 2019, 31, .	4.0	34

#	Article	IF	CITATIONS
217	Solvent Removal during Synthetic andNephilaFiber Spinning. Biomacromolecules, 2004, 5, 1698-1707.	5.4	33
218	Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids. Europhysics Letters, 2011, 96, 44004.	2.0	33
219	Electrophoretic Injection within Microdevices. Analytical Chemistry, 2002, 74, 1952-1961.	6.5	32
220	Synthesis, mechanical properties and chemical/solvent resistance of crosslinked poly(aryl-ether–ether–ketones) at high temperatures. Polymer, 2010, 51, 1914-1920.	3.8	32
221	Celebrating Soft Matter's 10th Anniversary: Chain configuration and rate-dependent mechanical properties in transient networks. Soft Matter, 2015, 11, 2085-2096.	2.7	32
222	Viscosity and Thermal Conductivity of Stable Graphite Suspensions Near Percolation. Nano Letters, 2015, 15, 127-133.	9.1	32
223	Multiscale Nature of Thixotropy and Rheological Hysteresis in Attractive Colloidal Suspensions under Shear. Physical Review Letters, 2019, 123, 248003.	7.8	32
224	Improved rheometry of yield stress fluids using bespoke fractal 3D printed vanes. Journal of Rheology, 2020, 64, 643-662.	2.6	32
225	The stability of viscoelastic creeping plane shear flows with viscous heating. Journal of Non-Newtonian Fluid Mechanics, 2000, 92, 109-133.	2.4	31
226	The Dynamic Compressive Response of Open-Cell Foam Impregnated With a Newtonian Fluid. Journal of Applied Mechanics, Transactions ASME, 2008, 75, .	2.2	31
227	An analytic solution for capillary thinning and breakup of FENE-P fluids. Journal of Non-Newtonian Fluid Mechanics, 2015, 218, 53-61.	2.4	31
228	Mobility of power-law and Carreau fluids through fibrous media. Physical Review E, 2015, 92, 063012.	2.1	30
229	Time–connectivity superposition and the gel/glass duality of weak colloidal gels. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
230	Rolling stones: The motion of a sphere down an inclined plane coated with a thin liquid film. Physics of Fluids, 2009, 21, .	4.0	29
231	Structural limitation to the material strength of electrorheological fluids. Applied Physics Letters, 1997, 71, 333-335.	3.3	28
232	Rheological modelling of the peeling of pressure-sensitive adhesives and other elastomers. International Journal of Adhesion and Adhesives, 1998, 18, 333-343.	2.9	28
233	The experimental observation and modeling of an "Ovaici―necklace and stick–spurt instability arising during the cold extrusion of chocolate. Journal of Rheology, 1998, 42, 125-157.	2.6	28
234	Shear-Induced Degradation of Linear Polyacrylamide Solutions during Pre-Electrophoretic Loading. Analytical Chemistry, 2001, 73, 3035-3044.	6.5	28

#	Article	IF	CITATIONS
235	Characterization and modeling of direct-write fabrication of microscale polymer fibers. Polymer, 2011, 52, 1654-1661.	3.8	28
236	Constant force extensional rheometry of polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 2012, 169-170, 26-41.	2.4	28
237	Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol. Journal of Rheology, 2018, 62, 1037-1050.	2.6	28
238	Extensional flows of polymer solutions in microfluidic converging/diverging geometries. Central South University, 2007, 14, 6-9.	0.5	27
239	A compact dual-crystal modulated birefringence-measurement system for microgravity applications. Measurement Science and Technology, 1999, 10, 946-955.	2.6	26
240	Utilizing Dynamic Tensiometry to Quantify Contact Angle Hysteresis and Wetting State Transitions on Nonwetting Surfaces. Langmuir, 2013, 29, 13396-13406.	3.5	26
241	A new model for dilute polymer solutions in flows with strong extensional components. Journal of Rheology, 2002, 46, 1057-1089.	2.6	24
242	Filament stretching rheometer: inertia compensation revisited. Rheologica Acta, 2003, 42, 269-272.	2.4	24
243	Multiple Shear-Banding Transitions for a Model of Wormlike Micellar Solutions. SIAM Journal on Applied Mathematics, 2012, 72, 1192-1212.	1.8	24
244	Quantitative polarized light microscopy of unstained mammalian cochlear sections. Journal of Biomedical Optics, 2013, 18, 026021.	2.6	24
245	Response to: Sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers― Journal of Rheology, 2014, 58, 1071-1082.	2.6	24
246	Time-rate-transformation framework for targeted assembly of short-range attractive colloidal suspensions. Materials Today Advances, 2020, 5, 100026.	5.2	24
247	Effect of viscous heating on linear stability of viscoelastic cone-and-plate flow: axisymmetric case. Journal of Non-Newtonian Fluid Mechanics, 2002, 102, 321-342.	2.4	23
248	Structure evolution in electrorheological fluids flowing through microchannels. Soft Matter, 2013, 9, 2889.	2.7	22
249	Thin Films in Partial Wetting: Internal Selection of Contact-Line Dynamics. Physical Review Letters, 2015, 115, 034502.	7.8	22
250	Micro-scale extensional rheometry using hyperbolic converging/diverging channels and jet breakup. Biomicrofluidics, 2016, 10, 043502.	2.4	22
251	Effect of a controlled pre-deformation history on extensional viscosity of dilute polymer solutions. Rheologica Acta, 2008, 47, 841-859.	2.4	21
252	Designing Robust Hierarchically Textured Oleophobic Fabrics. Langmuir, 2015, 31, 13201-13213.	3.5	21

#	Article	IF	CITATIONS
253	Time-Resolved Mechanical Spectroscopy of Soft Materials via Optimally Windowed Chirps. Physical Review X, 2018, 8, .	8.9	21
254	Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries. Computers and Fluids, 2018, 174, 14-33.	2.5	21
255	Programmable Anisotropy and Percolation in Supramolecular Patchy Particle Gels. ACS Nano, 2020, 14, 17018-17027.	14.6	21
256	Spectral Universality of Elastoinertial Turbulence. Physical Review Letters, 2021, 127, 074501.	7.8	21
257	Thermorheological properties near the glass transition of oligomeric poly(methyl methacrylate) blended with acrylic polyhedral oligomeric silsesquioxane nanocages. Rheologica Acta, 2006, 45, 971-981.	2.4	20
258	On the polymer entropic force singularity and its relation to extensional stress relaxation and filament recoil. Journal of Rheology, 2004, 48, 209-221.	2.6	19
259	Rapid measurement of transient velocity evolution using GERVAIS. Journal of Magnetic Resonance, 2010, 202, 93-101.	2.1	19
260	High-flux magnetorheology at elevated temperatures. Rheologica Acta, 2013, 52, 623-641.	2.4	19
261	Rapid viscoelastic switching of an ambient temperature range photo-responsive azobenzene side chain liquid crystal polymer. Polymer, 2013, 54, 2850-2856.	3.8	19
262	Spontaneous wettability patterning via creasing instability. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8087-8092.	7.1	19
263	Mobility and pore-scale fluid dynamics of rate-dependent yield-stress fluids flowing through fibrous porous media. Journal of Non-Newtonian Fluid Mechanics, 2016, 235, 76-82.	2.4	19
264	The importance of flow history in mixed shear and extensional flows. Journal of Non-Newtonian Fluid Mechanics, 2016, 233, 133-145.	2.4	19
265	Medium amplitude parallel superposition (MAPS) rheology. Part 1: Mathematical framework and theoretical examples. Journal of Rheology, 2020, 64, 551-579.	2.6	19
266	Interfacial instability of pressure-driven channel flow for a two-species model of entangled wormlike micellar solutions. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 566-577.	2.4	18
267	Sol–Gel Synthesis of \$hbox{Au/Cu-TiO}_{2}\$ Nanocomposite and Their Morphological and Optical Properties. IEEE Photonics Journal, 2013, 5, 2201908-2201908.	2.0	18
268	Restoring universality to the pinch-off of a bubble. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13780-13784.	7.1	18
269	Stress decomposition in LAOS of dense colloidal suspensions. Journal of Rheology, 2020, 64, 343-351.	2.6	18
270	Substrateâ€Versatile Directâ€Write Printing of Carbon Nanotubeâ€Based Flexible Conductors, Circuits, and Sensors. Advanced Functional Materials, 2021, 31, 2100245.	14.9	18

#	Article	IF	CITATIONS
271	Cooperative drag reduction in turbulent flows using polymer additives and superhydrophobic walls. Physical Review Fluids, 2020, 5, .	2.5	18
272	The nucleation of receptor-mediated endocytosis Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1786-1791.	7.1	17
273	Exploring the kinetics of switchable polymer surfaces with dynamic tensiometry. Soft Matter, 2013, 9, 6080.	2.7	16
274	Layer-by-layer functionalized nanotube arrays: A versatile microfluidic platform for biodetection. Microsystems and Nanoengineering, 2015, 1, .	7.0	16
275	Kinetics of Photoinduced Wettability Switching on Nanoporous Titania Surfaces under Oil. Advanced Materials Interfaces, 2017, 4, 1700462.	3.7	16
276	Rotary atomization of Newtonian and viscoelastic liquids. Physical Review Fluids, 2020, 5, .	2.5	16
277	Incorporating Rheological Nonlinearity into Fractional Calculus Descriptions of Fractal Matter and Multi-Scale Complex Fluids. Fractal and Fractional, 2021, 5, 174.	3.3	16
278	Arrested Chain Growth During Magnetic Directed Particle Assembly in Yield Stress Matrix Fluids. Langmuir, 2012, 28, 3683-3689.	3.5	15
279	Epidermal biopolysaccharides from plant seeds enable biodegradable turbulent drag reduction. Scientific Reports, 2019, 9, 18263.	3.3	15
280	Versatile acid solvents for pristine carbon nanotube assembly. Science Advances, 2022, 8, eabm3285.	10.3	15
281	Extensional deformation of non-Newtonian liquid bridges. Computational Mechanics, 1998, 21, 461-476.	4.0	14
282	Simultaneous Measurement of Viscoelasticity and Electrical Conductivity of an Electrorheological Fluid. Langmuir, 1998, 14, 985-989.	3.5	14
283	Popliteal rippling of layered elastic tubes and scrolls. Europhysics Letters, 2004, 65, 323-329.	2.0	14
284	High-energy and high-power Zn–Ni flow batteries with semi-solid electrodes. Sustainable Energy and Fuels, 2020, 4, 4076-4085.	4.9	14
285	Digital particle imaging velocimetry of viscoelastic fluids. AICHE Journal, 1997, 43, 289-302.	3.6	13
286	Microrheometry for Studying the Rheology and Dynamics of Polymers Near Interfaces. Applied Rheology, 1999, 9, 27-33.	5.2	13
287	An Ontology for Large Amplitude Oscillatory Shear Flow. AIP Conference Proceedings, 2008, , .	0.4	13
288	Plasmon Resonance Enhanced Photocatalysis Under Visible Light with Au/Cu–TiO ₂ Nanoparticles: Removal Cr (VI) from Water as a Case of Study. Science of Advanced Materials, 2013, 5, 2007-2014.	0.7	13

#	Article	IF	CITATIONS
289	Interception efficiency in two-dimensional flow past confined porous cylinders. Chemical Engineering Science, 2014, 116, 752-762.	3.8	12
290	Superoleophilic Titania Nanoparticle Coatings with Fast Fingerprint Decomposition and High Transparency. ACS Applied Materials & Interfaces, 2017, 9, 8354-8360.	8.0	12
291	Shear melting and recovery of crosslinkable cellulose nanocrystal–polymer gels. Soft Matter, 2019, 15, 4401-4412.	2.7	12
292	Asphaltene Adsorption on Functionalized Solids. Langmuir, 2020, 36, 3894-3902.	3.5	12
293	Crack morphologies in drying suspension drops. Soft Matter, 2021, 17, 8832-8837.	2.7	12
294	Why the Cox–Merz rule and Gleissle mirror relation work: A quantitative analysis using the Wagner integral framework with a fractional Maxwell kernel. Physics of Fluids, 2022, 34, .	4.0	12
295	Non-Newtonian Flows. , 2007, , 619-743.		11
296	Medium amplitude parallel superposition (MAPS) rheology. Part 2: Experimental protocols and data analysis. Journal of Rheology, 2020, 64, 1263-1293.	2.6	11
297	An improved Capillary Breakup Extensional Rheometer to characterize weakly rate-thickening fluids: Applications in synthetic automotive oils. Journal of Non-Newtonian Fluid Mechanics, 2021, 291, 104496.	2.4	11
298	Levitation of fizzy drops. Science Advances, 2021, 7, .	10.3	11
299	Finite volume simulations of particle-laden viscoelastic fluid flows: application to hydraulic fracture processes. Engineering With Computers, 2022, 38, 5395-5421.	6.1	11
300	An analytical solution to the extended Navier–Stokes equations using the Lambert <i>W</i> function. AICHE Journal, 2014, 60, 1413-1423.	3.6	10
301	Quantitative polarized light microscopy of human cochlear sections. Biomedical Optics Express, 2015, 6, 599.	2.9	10
302	Yield Hardening of Electrorheological Fluids in Channel Flow. Physical Review Applied, 2016, 5, .	3.8	10
303	Age-dependent capillary thinning dynamics of physically-associated salivary mucin networks. Journal of Rheology, 2017, 61, 1309-1326.	2.6	10
304	Spatiotemporal dynamics of multiple shear-banding events for viscoelastic micellar fluids in cone-plate shearing flows. Journal of Non-Newtonian Fluid Mechanics, 2015, 222, 234-247.	2.4	9
305	Rheology as a Mechanoscopic Method to Monitor Mineralization in Hydrogels. Biomacromolecules, 2017, 18, 4067-4074.	5.4	9
306	Reduced adhesion of sparkling water droplets. Physical Review Fluids, 2019, 4, .	2.5	9

#	Article	IF	CITATIONS
307	Rheology and microstructural evolution in pressure-driven flow of a magnetorheological fluid with strong particle–wall interactions. Journal of Intelligent Material Systems and Structures, 2012, 23, 969-978.	2.5	8
308	Capillary Breakup of Discontinuously Rate Thickening Suspensions. Physical Review Letters, 2013, 111, 036001.	7.8	8
309	Coupled dynamics of flow, microstructure, and conductivity in sheared suspensions. Soft Matter, 2016, 12, 7688-7697.	2.7	8
310	Enhancing the Performance of Viscous Electrode-Based Flow Batteries Using Lubricant-Impregnated Surfaces. ACS Applied Energy Materials, 2018, 1, 3614-3621.	5.1	8
311	OrthoChirp: A fast spectro-mechanical probe for monitoring transient microstructural evolution of complex fluids during shear. Journal of Non-Newtonian Fluid Mechanics, 2022, 301, 104744.	2.4	8
312	On Oreology, the fracture and flow of "milk's favorite cookie®― Physics of Fluids, 2022, 34, .	4.0	8
313	Electrophoresis using ultra-high voltages. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 779, 163-171.	2.3	7
314	Rheo-chemistry of gelation in aiyu (fig) jelly. Food Hydrocolloids, 2022, 123, 107001.	10.7	7
315	EXPERIMENTAL INVESTIGATION OF THE DAMPING OF STRUCTURAL VIBRATIONS BY VORTICITY PRODUCTION. Journal of Sound and Vibration, 1999, 220, 297-312.	3.9	6
316	Little Shop of Horrors: Rheology of the Mucilage of Drosera sp., a Carnivorous Plant. AIP Conference Proceedings, 2008, , .	0.4	6
317	The Normal-Stress-Behaviour of Suspensions With Viscoelastic Matrix Fluids. , 1998, , 554-555.		6
318	Nanobubble Formation at the Solid-Liquid Interface Studied by Atomic Force Microscopy. Materials Research Society Symposia Proceedings, 2005, 899, 1.	0.1	5
319	Lubricant-Impregnated Surfaces for Mitigating Asphaltene Deposition. ACS Applied Materials & Interfaces, 2020, 12, 28750-28758.	8.0	5
320	The medium amplitude response of nonlinear Maxwell–Oldroyd type models in simple shear. Journal of Non-Newtonian Fluid Mechanics, 2021, 295, 104601.	2.4	5
321	Geometry mediated friction reduction in Taylor-Couette flow. Physical Review Fluids, 2020, 5, .	2.5	5
322	Computational rheometry of yielding and viscoplastic flow in vane-and-cup rheometer fixtures. Journal of Non-Newtonian Fluid Mechanics, 2022, 307, 104857.	2.4	5
323	Probing Shear-Banding Transitions of Entangled Liquids Using Large Amplitude Oscillatory Shearing (LAOS) Deformations. AIP Conference Proceedings, 2008, , .	0.4	4
324	Polymers and Plastrons in Parallel Yield Enhanced Turbulent Drag Reduction. Fluids, 2020, 5, 197.	1.7	4

#	Article	IF	CITATIONS
325	Preliminary Findings from the SHERE ISS Experiment. , 2009, , .		3
326	Flow and Stability of Wormlike Micellar and Polymeric Solutions in Converging and T-Shaped Microchannels. AIP Conference Proceedings, 2008, , .	0.4	2
327	Recent Advances in Complex Fluids Modeling. , 0, , .		2
328	Characterizing viscoelastic properties of synthetic and natural fibers and their coatings with a torsional pendulum. Soft Matter, 2021, 17, 4578-4593.	2.7	2
329	Medium amplitude parallel superposition (MAPS) rheology of a wormlike micellar solution. Rheologica Acta, 2021, 60, 729-739.	2.4	2
330	Viscoelastic fishbones. Physical Review Fluids, 2019, 4, .	2.5	2
331	Shear History Effects on Extensional Flow of Non-Newtonian Fluids in Filament Stretching Rheometers. AIP Conference Proceedings, 2008, , .	0.4	1
332	Extensional Properties of a Dilute Polymer Solution Following Preshear in Microgravity. , 2010, , .		1
333	Extensional Properties of a Dilute Polymer Solution Following Preshear in Microgravity. , 2010, , .		1
334	Flexible Electronics: Substrateâ€Versatile Directâ€Write Printing of Carbon Nanotubeâ€Based Flexible Conductors, Circuits, and Sensors (Adv. Funct. Mater. 25/2021). Advanced Functional Materials, 2021, 31, 2170181.	14.9	1
335	A Viscoelastic Flow Instability in the Wake of a Confined Circular Cylinder. , 1992, , 198-200.		1
336	Special issue of JNNFM on extensional flow. Journal of Non-Newtonian Fluid Mechanics, 2006, 137, v-viii.	2.4	0
337	Photo-induced in situ switching of surface wettability of Titania films under air and oil environment. , 2013, , .		0
338	Colloidal Suspensions: Biphasic Electrode Suspensions for Li-Ion Semi-solid Flow Cells with High Energy Density, Fast Charge Transport, and Low-Dissipation Flow (Adv. Energy Mater. 15/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	19.5	0
339	Editorial: Viscoplastic fluids: From theory to application. Journal of Non-Newtonian Fluid Mechanics, 2019, 265, 140-142.	2.4	0
340	72nd Annual Meeting of the Society of Rheology. Applied Rheology, 2001, 11, 153-154.	5.2	0
341	BUCKLING INSTABILITIES IN THIN VISCOUS SHEETS. , 2002, , 249-249.		0
342	RHEOLOGY AND MICROSTRUCTURAL EVOLUTION IN PRESSURE-DRIVEN FLOW OF A MAGNETORHEOLOGICAL FLUID WITH STRONG PARTICLE-WALL INTERACTIONS. , 2011, , .		0

0

#	Article	IF	CITATIONS
343	Video: Rotary fragmentation of viscoelastic liquids. , 0, , .		0

344 10.1063/5.0085362.1., 2022, , .