Ronggui Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1592043/publications.pdf

Version: 2024-02-01

		257450	189892
59	2,740	24	50
papers	citations	h-index	g-index

60	60	60	5015
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	HERC3 regulates epithelial-mesenchymal transition by directly ubiquitination degradation EIF5A2 and inhibits metastasis of colorectal cancer. Cell Death and Disease, 2022, 13, 74.	6.3	16
2	TRIM65 determines the fate of a novel subtype of pituitary neuroendocrine tumors via ubiquitination and degradation of TPIT. Neuro-Oncology, 2022, 24, 1286-1297.	1.2	6
3	Hepatokine ERAP1 Disturbs Skeletal Muscle Insulin Sensitivity Via Inhibiting USP33-Mediated ADRB2 Deubiquitination. Diabetes, 2022, 71, 921-933.	0.6	5
4	Clinical and molecular characterization of thirty Chinese patients with congenital lipoid adrenal hyperplasia. Journal of Steroid Biochemistry and Molecular Biology, 2021, 206, 105788.	2.5	9
5	Opposing roles of E3 ligases TRIM23 and TRIM21 in regulation of ion channel ANO1 protein levels. Journal of Biological Chemistry, 2021, 296, 100738.	3.4	2
6	MKRN3-mediated ubiquitination of Poly(A)-binding proteins modulates the stability and translation of <i>GNRH1</i> mRNA in mammalian puberty. Nucleic Acids Research, 2021, 49, 3796-3813.	14.5	44
7	Epilepsy-Associated UBE3A Deficiency Downregulates Retinoic Acid Signalling Pathway. Frontiers in Genetics, 2021, 12, 681295.	2.3	6
8	RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation. Blood, 2021, 138, 689-705.	1.4	56
9	OTUD7B Deubiquitinates LSD1 to Govern Its Binding Partner Specificity, Homeostasis, and Breast Cancer Metastasis. Advanced Science, 2021, 8, e2004504.	11.2	27
10	TEM8 marks neovasculogenic tumor-initiating cells in triple-negative breast cancer. Nature Communications, 2021, 12, 4413.	12.8	19
11	Translatomic profiling reveals novel self-restricting virus-host interactions during HBV infection. Journal of Hepatology, 2021, 75, 74-85.	3.7	16
12	UBQLN4 is an ATM substrate that stabilizes the antiâ€apoptotic proteins BCL2A1 and BCL2L10 in mesothelioma. Molecular Oncology, 2021, 15, 3738-3752.	4.6	6
13	Reply to: "A global survey of alternative splicing of HBV transcriptome using long-read sequencing― Journal of Hepatology, 2021, , .	3.7	0
14	Multiomics interrogation into HBV (Hepatitis B virus)-host interaction reveals novel coding potential in human genome, and identifies canonical and non-canonical proteins as host restriction factors against HBV. Cell Discovery, 2021, 7, 105.	6.7	9
15	Editorial: The Dynamics of Stress Granules. Frontiers in Cell and Developmental Biology, 2021, 9, 789678.	3.7	1
16	BAP1 regulates AMPK-mTOR signalling pathway through deubiquitinating and stabilizing tumour-suppressor LKB1. Biochemical and Biophysical Research Communications, 2020, 529, 1025-1032.	2.1	4
17	An Integrative Synthetic Biology Approach to Interrogating Cellular Ubiquitin and Ufm Signaling. International Journal of Molecular Sciences, 2020, 21, 4231.	4.1	19
18	The KBTBD6/7-DRD2 axis regulates pituitary adenoma sensitivity to dopamine agonist treatment. Acta Neuropathologica, 2020, 140, 377-396.	7.7	19

#	Article	IF	Citations
19	Ubiquitination of IGF2BP3 by E3 ligase MKRN2 regulates the proliferation and migration of human neuroblastoma SHSY5Y cells. Biochemical and Biophysical Research Communications, 2020, 529, 43-50.	2.1	19
20	Enterohemorrhagic E. coli effector NIeL disrupts host NF-κB signaling by targeting multiple host proteins. Journal of Molecular Cell Biology, 2020, 12, 318-321.	3.3	11
21	MKRN3 regulates the epigenetic switch of mammalian puberty via ubiquitination of MBD3. National Science Review, 2020, 7, 671-685.	9.5	48
22	MTSS1 suppresses mammary tumor-initiating cells by enhancing RBCK1-mediated p65 ubiquitination. Nature Cancer, 2020, 1, 222-234.	13.2	11
23	A Novel Prognostic Model of Early-Stage Lung Adenocarcinoma Integrating Methylation and Immune Biomarkers. Frontiers in Genetics, 2020, 11, 634634.	2.3	18
24	Maternal exposure to triclosan constitutes a yet unrecognized risk factor for autism spectrum disorders. Cell Research, 2019, 29, 866-869.	12.0	25
25	ER-localized Hrd1 ubiquitinates and inactivates Usp15 to promote TLR4-induced inflammation during bacterial infection. Nature Microbiology, 2019, 4, 2331-2346.	13.3	39
26	High glucose–induced ubiquitination of G6PD leads to the injury of podocytes. FASEB Journal, 2019, 33, 6296-6310.	0.5	28
27	Long Non-coding RNA NEAT1 Alleviates Acute-on-Chronic Liver Failure Through Blocking TRAF6 Mediated Inflammatory Response. Frontiers in Physiology, 2019, 10, 1503.	2.8	13
28	SQSTM1/p62 (sequestosome 1) senses cellular ubiquitin stress through E2-mediated ubiquitination. Autophagy, 2018, 14, 1-2.	9.1	12
29	The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nature Cell Biology, 2018, 20, 320-331.	10.3	86
30	Ubiquitin-dependent degradation of CDK2 drives the therapeutic differentiation of AML by targeting PRDX2. Blood, 2018, 131, 2698-2711.	1.4	66
31	The E3 Ligase RING1 Targets p53 for Degradation and Promotes Cancer Cell Proliferation and Survival. Cancer Research, 2018, 78, 359-371.	0.9	51
32	Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders. Cell Research, 2018, 28, 48-68.	12.0	95
33	ALS-Associated E478G Mutation in Human OPTN (Optineurin) Promotes Inflammation and Induces Neuronal Cell Death. Frontiers in Immunology, 2018, 9, 2647.	4.8	33
34	FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature, 2018, 564, 130-135.	27.8	174
35	A novel mutation in 5'-UTR of Makorin ring finger 3 gene associated with the familial precocious puberty. Acta Biochimica Et Biophysica Sinica, 2018, 50, 1291-1293.	2.0	17
36	Ubiquitin-like proteins and their Chinese nomenclatures. Chinese Science Bulletin, 2018, 63, 2564-2569.	0.7	0

#	Article	IF	CITATIONS
37	SPSB1-mediated HnRNP A1 ubiquitylation regulates alternative splicing and cell migration in EGF signaling. Cell Research, 2017, 27, 540-558.	12.0	57
38	Ubiquitylation of p62/sequestosome1 activates its autophagy receptor function and controls selective autophagy upon ubiquitin stress. Cell Research, 2017, 27, 657-674.	12.0	143
39	LRCH1 interferes with DOCK8-Cdc42–induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. Journal of Experimental Medicine, 2017, 214, 209-226.	8.5	40
40	Fibroblasts in an endocardial fibroelastosis disease model mainly originate from mesenchymal derivatives of epicardium. Cell Research, 2017, 27, 1157-1177.	12.0	39
41	Bacterial effector NIeL promotes enterohemorrhagic E. coli-induced attaching and effacing lesions by ubiquitylating and inactivating JNK. PLoS Pathogens, 2017, 13, e1006534.	4.7	28
42	Recent progress in ubiquitin and ubiquitin-like protein (Ubl) signaling. Cell Research, 2016, 26, 389-390.	12.0	16
43	Iron overload in hereditary tyrosinemia type 1 induces liver injury through the Sp1/Tfr2/hepcidin axis. Journal of Hepatology, 2016, 65, 137-145.	3.7	22
44	A CRISPR-based approach for targeted DNA demethylation. Cell Discovery, 2016, 2, 16009.	6.7	325
45	The heme–p53 interaction: Linking iron metabolism to p53 signaling and tumorigenesis. Molecular and Cellular Oncology, 2016, 3, e965642.	0.7	9
46	Identification of Arsenic Direct-Binding Proteins in Acute Promyelocytic Leukaemia Cells. International Journal of Molecular Sciences, 2015, 16, 26871-26879.	4.1	16
47	Prognostic significance of SLC9A9 in patients with resectable esophageal squamous cell carcinoma. Tumor Biology, 2015, 36, 6797-6803.	1.8	15
48	ZIP-seq: genome-wide mapping of trinucleotide repeats at single-base resolution. Journal of Molecular Cell Biology, 2014, 6, 93-96.	3.3	2
49	Profiling human protein degradome delineates cellular responses to proteasomal inhibition and reveals a feedback mechanism in regulating proteasome homeostasis. Cell Research, 2014, 24, 1214-1230.	12.0	13
50	The use of hollow mesoporous silica nanospheres to encapsulate bortezomib and improve efficacy for non-small cell lung cancer therapy. Biomaterials, 2014, 35, 316-326.	11.4	96
51	Iron Metabolism Regulates p53 Signaling through Direct Heme-p53 Interaction and Modulation of p53 Localization, Stability, and Function. Cell Reports, 2014, 7, 180-193.	6.4	170
52	A smartphone controlled handheld microfluidic liquid handling system. Lab on A Chip, 2014, 14, 4085-4092.	6.0	54
53	Ubiquitylation of Autophagy Receptor Optineurin by HACE1 Activates Selective Autophagy for Tumor Suppression. Cancer Cell, 2014, 26, 106-120.	16.8	198
54	Hydrophilic Molybdenum Oxide Nanomaterials with Controlled Morphology and Strong Plasmonic Absorption for Photothermal Ablation of Cancer Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3915-3922.	8.0	166

Ronggui Hu

#	Article	IF	CITATIONS
55	Characterization of the GufA subfamily member SLC39A11/Zip11 as a zinc transporter. Journal of Nutritional Biochemistry, 2013, 24, 1697-1708.	4.2	66
56	Nanocomposites: A Low-Toxic Multifunctional Nanoplatform Based on Cu9S5@mSiO2Core-Shell Nanocomposites: Combining Photothermal- and Chemotherapies with Infrared Thermal Imaging for Cancer Treatment (Adv. Funct. Mater. 35/2013). Advanced Functional Materials, 2013, 23, 4280-4280.	14.9	8
57	A Lowâ€Toxic Multifunctional Nanoplatform Based on Cu ₉ S ₅ @mSiO ₂ Coreâ€Shell Nanocomposites: Combining Photothermalâ€and Chemotherapies with Infrared Thermal Imaging for Cancer Treatment. Advanced Functional Materials. 2013. 23. 4281-4292.	14.9	207
58	A simple transformation from silica core–shell–shell to yolk–shell nanostructures: a useful platform for effective cell imaging and drug delivery. Journal of Materials Chemistry, 2012, 22, 17011.	6.7	37
59	Retinoic Acid Supplementation Rescues the Social Deficits in Fmr1 Knockout Mice. Frontiers in Genetics, $0,13,.$	2.3	2