
Safia Costes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1591979/publications.pdf Version: 2024-02-01

SAFIA COSTES

#	Article	IF	CITATIONS
1	The nuclear receptor REV-ERBα is implicated in the alteration of β-cell autophagy and survival under diabetogenic conditions. Cell Death and Disease, 2022, 13, 353.	6.3	3
2	Mechanisms of Beta-Cell Apoptosis in Type 2 Diabetes-Prone Situations and Potential Protection by GLP-1-Based Therapies. International Journal of Molecular Sciences, 2021, 22, 5303.	4.1	25
3	Methods to Study Roles of β-Arrestins in the Regulation of Pancreatic β-Cell Function. Methods in Molecular Biology, 2019, 1957, 345-364.	0.9	Ο
4	Targeting protein misfolding to protect pancreatic beta-cells in type 2 diabetes. Current Opinion in Pharmacology, 2018, 43, 104-110.	3.5	25
5	Proteasomal degradation of the histone acetyl transferase p300 contributes to beta-cell injury in a diabetes environment. Cell Death and Disease, 2018, 9, 600.	6.3	16
6	ERK1 is dispensable for mouse pancreatic beta cell function but is necessary for glucose-induced full activation of MSK1 and CREB. Diabetologia, 2017, 60, 1999-2010.	6.3	21
7	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
8	CHOP Contributes to, But Is Not the Only Mediator of, IAPP Induced β-Cell Apoptosis. Molecular Endocrinology, 2016, 30, 446-454.	3.7	39
9	β Cell–specific increased expression of calpastatin prevents diabetes induced by islet amyloid polypeptide toxicity. JCl Insight, 2016, 1, e89590.	5.0	17
10	Activation of Melatonin Signaling Promotes β-Cell Survival and Function. Molecular Endocrinology, 2015, 29, 682-692.	3.7	62
11	UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells. Autophagy, 2014, 10, 1004-1014.	9.1	54
12	Insulin-Degrading Enzyme Inhibition, a Novel Therapy for Type 2 Diabetes?. Cell Metabolism, 2014, 20, 201-203.	16.2	25
13	Autophagy defends pancreatic Î ² cells from human islet amyloid polypeptide-induced toxicity. Journal of Clinical Investigation, 2014, 124, 3489-3500.	8.2	188
14	β-Cell Failure in Type 2 Diabetes: A Case of Asking Too Much of Too Few?. Diabetes, 2013, 62, 327-335.	0.6	103
15	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
16	Cyclin-Dependent Kinase 5 Promotes Pancreatic Â-Cell Survival via Fak-Akt Signaling Pathways. Diabetes, 2011, 60, 1186-1197.	0.6	44
17	Human-IAPP disrupts the autophagy/lysosomal pathway in pancreatic î²-cells: protective role of p62-positive cytoplasmic inclusions. Cell Death and Differentiation, 2011, 18, 415-426.	11.2	119
18	β-Cell Dysfunctional ERAD/Ubiquitin/Proteasome System in Type 2 Diabetes Mediated by Islet Amyloid Polypeptide–Induced UCH-L1 Deficiency. Diabetes, 2011, 60, 227-238.	0.6	103

SAFIA COSTES

#	Article	IF	CITATIONS
19	Roles and Regulation of the Transcription Factor CREB in Pancreatic \hat{l}^2 -Cells. Current Molecular Pharmacology, 2011, 4, 187-195.	1.5	72
20	Calcium-activated Calpain-2 Is a Mediator of Beta Cell Dysfunction and Apoptosis in Type 2 Diabetes. Journal of Biological Chemistry, 2010, 285, 339-348.	3.4	79
21	GLP-1 Mediates Antiapoptotic Effect by Phosphorylating Bad through a β-Arrestin 1-mediated ERK1/2 Activation in Pancreatic β-Cells. Journal of Biological Chemistry, 2010, 285, 1989-2002.	3.4	156
22	The effect of curcumin on human islet amyloid polypeptide misfolding and toxicity. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2010, 17, 118-128.	3.0	83
23	Degradation of cAMP-Responsive Element–Binding Protein by the Ubiquitin-Proteasome Pathway Contributes to Glucotoxicity in β-Cells and Human Pancreatic Islets. Diabetes, 2009, 58, 1105-1115.	0.6	53
24	β-Arrestin 1 ls Required for PAC1 Receptor-mediated Potentiation of Long-lasting ERK1/2 Activation by Glucose in Pancreatic β-Cells. Journal of Biological Chemistry, 2009, 284, 4332-4342.	3.4	40
25	The CDK4–pRB–E2F1 pathway controls insulin secretion. Nature Cell Biology, 2009, 11, 1017-1023.	10.3	118
26	Signaling Pathways Involved in Physiopathology of Pancreatic β -Cells. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2007, 1, 180-192.	0.6	0
27	The Glucagon-Miniglucagon Interplay: A New Level in the Metabolic Regulation. Annals of the New York Academy of Sciences, 2006, 1070, 161-166.	3.8	11
28	ERK1/2 Control Phosphorylation and Protein Level of cAMP-Responsive Element-Binding Protein: A Key Role in Glucose-Mediated Pancreatic Â-Cell Survival. Diabetes, 2006, 55, 2220-2230.	0.6	89
29	Extracellularly Regulated Kinases 1/2 (p44/42 Mitogen-Activated Protein Kinases) Phosphorylate Synapsin I and Regulate Insulin Secretion in the MIN6 β-Cell Line and Islets of Langerhans. Endocrinology, 2005, 146, 643-654.	2.8	103
30	Glucagon Promotes cAMP-response Element-binding Protein Phosphorylation via Activation of ERK1/2 in MIN6 Cell Line and Isolated Islets of Langerhans. Journal of Biological Chemistry, 2004, 279, 20345-20355.	3.4	62
31	Cooperative Effects between Protein Kinase A and p44/p42 Mitogen-Activated Protein Kinase to Promote cAMP-Responsive Element Binding Protein Activation after Î ² Cell Stimulation by Glucose and Its Alteration Due to Glucotoxicity. Annals of the New York Academy of Sciences, 2004, 1030, 230-242.	3.8	19