Simon Stael

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1591453/publications.pdf

Version: 2024-02-01

331670 377865 2,110 34 21 34 citations h-index g-index papers 36 36 36 2971 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Plant organellar calcium signalling: an emerging field. Journal of Experimental Botany, 2012, 63, 1525-1542.	4.8	296
2	The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant Journal, 2010, 63, 484-498.	5.7	203
3	Plant innate immunity – sunny side up?. Trends in Plant Science, 2015, 20, 3-11.	8.8	193
4	Damage on plants activates Ca $<$ sup $>2+sup>-dependent metacaspases for release of immunomodulatory peptides. Science, 2019, 363, .$	12.6	170
5	The ROS Wheel: Refining ROS Transcriptional Footprints. Plant Physiology, 2016, 171, 1720-1733.	4.8	137
6	Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of <i>Arabidopsisâ€∫thaliana</i> . FEBS Journal, 2008, 275, 1767-1777.	4.7	134
7	<i>Post mortem</i> function of <scp>A</scp> t <scp>MC</scp> 9 in xylem vessel elements. New Phytologist, 2013, 200, 498-510.	7.3	117
8	The <i>Arabidopsis</i> METACASPASE9 Degradome Â. Plant Cell, 2013, 25, 2831-2847.	6.6	109
9	<scp>GRIM REAPER</scp> peptide binds to receptor kinase <scp>PRK</scp> 5 to trigger cell death in <i>Arabidopsis</i> . EMBO Journal, 2015, 34, 55-66.	7.8	83
10	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
11	Chloroplast-localized protein kinases: a step forward towards a complete inventory. Journal of Experimental Botany, 2012, 63, 1713-1723.	4.8	60
12	Breaking Bad News: Dynamic Molecular Mechanisms of Wound Response in Plants. Frontiers in Plant Science, 2020, 11, 610445.	3.6	55
13	N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana. Molecular and Cellular Proteomics, 2017, 16, 1064-1080.	3.8	54
14	Arabidopsis calcium-binding mitochondrial carrier proteins as potential facilitators of mitochondrial ATP-import and plastid SAM-import. FEBS Letters, 2011, 585, 3935-3940.	2.8	53
15	Cross-talk between calcium signalling and protein phosphorylation at the thylakoid. Journal of Experimental Botany, 2012, 63, 1725-1733.	4.8	46
16	Phosphorylation of <i>Arabidopsis</i> transketolase at Ser428 provides a potential paradigm for the metabolic control of chloroplast carbon metabolism. Biochemical Journal, 2014, 458, 313-322.	3.7	44
17	Protein N-acylation overrides differing targeting signals. FEBS Letters, 2011, 585, 517-522.	2.8	43
18	Mining the soluble chloroplast proteome by affinity chromatography. Proteomics, 2011, 11, 1287-1299.	2.2	43

#	Article	IF	CITATIONS
19	Detection of Damage-Activated Metacaspase Activity by Western Blot in Plants. Methods in Molecular Biology, 2022, 2447, 127-137.	0.9	33
20	The function of two type II metacaspases in woody tissues of <i>Populus</i> trees. New Phytologist, 2018, 217, 1551-1565.	7.3	30
21	Diverse biological effects of glycosyltransferase genes from Tartary buckwheat. BMC Plant Biology, 2019, 19, 339.	3.6	24
22	Plant proteases and programmed cell death. Journal of Experimental Botany, 2019, 70, 1991-1995.	4.8	20
23	Extracellular peptide Kratos restricts cell death during vascular development and stress in Arabidopsis. Journal of Experimental Botany, 2019, 70, 2199-2210.	4.8	11
24	Higher Plant Proteins of Cyanobacterial Origin: Are They or Are They Not Preferentially Targeted to Chloroplasts?. Molecular Plant, 2014, 7, 1797-1800.	8.3	10
25	Chloroplast calcium signalling quenches a thirst. Nature Plants, 2019, 5, 559-560.	9.3	10
26	Chloroplast Isolation and Affinity Chromatography for Enrichment of Low-Abundant Proteins in Complex Proteomes. Methods in Molecular Biology, 2015, 1295, 211-223.	0.9	10
27	Pars Pro Toto: Every Single Cell Matters. Frontiers in Plant Science, 2021, 12, 656825.	3.6	8
28	Preparation of Arabidopsis thaliana Seedling Proteomes for Identifying Metacaspase Substrates by N-terminal COFRADIC. Methods in Molecular Biology, 2014, 1133, 255-261.	0.9	8
29	Caught green-handed: methods for in vivo detection and visualization of protease activity. Journal of Experimental Botany, 2019, 70, 2125-2141.	4.8	7
30	Plant Metacaspase Activation and Activity. Methods in Molecular Biology, 2014, 1133, 237-253.	0.9	7
31	Proteolytic Proteoforms: Elusive Components of Hormonal Pathways?. Trends in Plant Science, 2020, 25, 325-328.	8.8	5
32	Chloroplast Isolation and Enrichment of Low-Abundance Proteins by Affinity Chromatography for Identification in Complex Proteomes. Methods in Molecular Biology, 2021, 2261, 535-547.	0.9	2
33	The for Novel Inhibitors of Auxin-Induced Ca2+ Signaling. Methods in Molecular Biology, 2021, 2213, 89-98.	0.9	1
34	Chemical Perturbation of Chloroplast Ca2+ Dynamics in Arabidopsis thaliana Suspension Cell Cultures and Seedlings. Methods in Molecular Biology, 2022, 2494, 149-158.	0.9	1