
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1588386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature, 1993, 363, 67-69.	27.8	756
2	Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of <i>Pseudomonas aeruginosa</i> . Genome Research, 2009, 19, 12-23.	5.5	317
3	Structure and function of the Mur enzymes: development of novel inhibitors. Molecular Microbiology, 2003, 47, 1-12.	2.5	293
4	Sigma factors in <i>Pseudomonas aeruginosa</i> . FEMS Microbiology Reviews, 2008, 32, 38-55.	8.6	261
5	Antimicrobial Resistance Genes in Enterotoxigenic Escherichia coli O149:K91 Isolates Obtained over a 23-Year Period from Pigs. Antimicrobial Agents and Chemotherapy, 2003, 47, 3214-3221.	3.2	245
6	The <i>Pseudomonas aeruginosa</i> Pan-Genome Provides New Insights on Its Population Structure, Horizontal Gene Transfer, and Pathogenicity. Genome Biology and Evolution, 2019, 11, 109-120.	2.5	223
7	Differential Regulation of Twitching Motility and Elastase Production by Vfr in Pseudomonas aeruginosa. Journal of Bacteriology, 2002, 184, 3605-3613.	2.2	175
8	In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environmental Microbiology, 2003, 5, 1294-1308.	3.8	171
9	Heterogeneity among Virulence and Antimicrobial Resistance Gene Profiles of Extraintestinal Escherichia coli Isolates of Animal and Human Origin. Journal of Clinical Microbiology, 2004, 42, 5444-5452.	3.9	167
10	Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Frontiers in Microbiology, 2015, 6, 1036.	3.5	144
11	Phylogeny of LCR-1 and OXA-5 with class A and class D ?-lactamases. Molecular Microbiology, 1992, 6, 1693-1705.	2.5	143
12	Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. Applied and Environmental Microbiology, 1993, 59, 4211-4215.	3.1	131
13	The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Microbiology (United) Tj ETQq1 1 0.784	314 rgBT	Overlock 10
14	Decreased outer membrane permeability in imipenem-resistant mutants of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 1989, 33, 1202-1206.	3.2	101
15	Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis. Applied and Environmental Microbiology, 1993, 59, 523-527.	3.1	97
16	Comparative Genomics of Isolates of a Pseudomonas aeruginosa Epidemic Strain Associated with Chronic Lung Infections of Cystic Fibrosis Patients. PLoS ONE, 2014, 9, e87611.	2.5	95
17	A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nature Communications, 2020, 11, 1370.	12.8	90
18	In Vivo Growth of Pseudomonas aeruginosa Strains PAO1 and PA14 and the Hypervirulent Strain LESB58 in a Rat Model of Chronic Lung Infection. Journal of Bacteriology, 2008, 190, 2804-2813.	2.2	89

#	Article	IF	CITATIONS
19	Comparative analysis of the 16S to 23S ribosomal intergenic spacer sequences of Bacillus thuringiensis strains and subspecies and of closely related species. Applied and Environmental Microbiology, 1995, 61, 1623-1626.	3.1	89
20	Molecular basis of antibiotic resistance and β-lactamase inhibition by mechanism-based inactivators: perspectives and future directions. FEMS Microbiology Reviews, 2000, 24, 251-262.	8.6	88
21	The biology of <scp>Mur</scp> ligases as an antibacterial target. Molecular Microbiology, 2014, 94, 242-253.	2.5	88
22	Proteomic, Microarray, and Signature-Tagged Mutagenesis Analyses of Anaerobic <i>Pseudomonas aeruginosa</i> at pH 6.5, Likely Representing Chronic, Late-Stage Cystic Fibrosis Airway Conditions. Journal of Bacteriology, 2008, 190, 2739-2758.	2.2	86
23	The Lon Protease Is Essential for Full Virulence in Pseudomonas aeruginosa. PLoS ONE, 2012, 7, e49123.	2.5	83
24	Animal models of chronic lung infection with <i>Pseudomonas aeruginosa</i> : useful tools for cystic fibrosis studies. Laboratory Animals, 2008, 42, 389-412.	1.0	81
25	An animal source for the ROB-1 beta-lactamase of Haemophilus influenzae type b. Antimicrobial Agents and Chemotherapy, 1986, 29, 212-215.	3.2	80
26	Cloning of SHV-2, OHIO-1, and OXA-6 beta-lactamases and cloning and sequencing of SHV-1 beta-lactamase. Antimicrobial Agents and Chemotherapy, 1990, 34, 1577-1583.	3.2	79
27	Strategies for isolation of in vivo expressed genes from bacteria. FEMS Microbiology Reviews, 1999, 23, 69-91.	8.6	79
28	Characterization of tRNA-dependent Peptide Bond Formation by MurM in the Synthesis of Streptococcus pneumoniae Peptidoglycan. Journal of Biological Chemistry, 2008, 283, 6402-6417.	3.4	70
29	Temperate phages enhance pathogen fitness in chronic lung infection. ISME Journal, 2016, 10, 2553-2555.	9.8	69
30	Genomic characterisation of an international Pseudomonas aeruginosa reference panel indicates that the two major groups draw upon distinct mobile gene pools. FEMS Microbiology Letters, 2018, 365, .	1.8	67
31	Discovery of new MurF inhibitors via pharmacophore modeling and QSAR analysis followed by in-silico screening. Bioorganic and Medicinal Chemistry, 2008, 16, 1218-1235.	3.0	66
32	Genomics of the 35-kbpvdlocus and analysis of novelpvdIJKgenes implicated in pyoverdine biosynthesis inPseudomonas aeruginosa. FEMS Microbiology Letters, 2000, 190, 141-146.	1.8	63
33	Molecular cloning and DNA homology of plasmid-mediated \hat{l}^2 -lactamase genes. Molecular Genetics and Genomics, 1987, 206, 252-258.	2.4	62
34	Draft genomes of 12 host-adapted and environmental isolates of <i>Pseudomonas aeruginosa</i> and their positions in the core genome phylogeny. Pathogens and Disease, 2014, 71, 20-25.	2.0	62
35	In Vivo-Induced Genes in Pseudomonas aeruginosa. Infection and Immunity, 2000, 68, 2359-2362.	2.2	61
36	A Plasmid-Mediated Cepbalosporinase from Achromobacter Species. Journal of Infectious Diseases, 1982, 145, 753-761.	4.0	58

#	Article	IF	CITATIONS
37	Molecular structure and interrelationships of multiresistance β-lactamase transposons. Plasmid, 1988, 19, 21-29.	1.4	58
38	Nucleotide sequence and phylogeny of SHV-2 beta-lactamase. Antimicrobial Agents and Chemotherapy, 1990, 34, 1725-1732.	3.2	57
39	Physical and genetic mapping of cloned ribosomal DNA from Toxoplasma gondii: primary and secondary structure of the 5S gene. Gene, 1992, 114, 165-171.	2.2	56
40	Primary structure of OXA-3 and phylogeny of oxacillin-hydrolyzing class D beta-lactamases. Antimicrobial Agents and Chemotherapy, 1995, 39, 887-893.	3.2	56
41	Functional Annotation of the Ophiostoma novo-ulmi Genome: Insights into the Phytopathogenicity of the Fungal Agent of Dutch Elm Disease. Genome Biology and Evolution, 2015, 7, 410-430.	2.5	56
42	Defined Oligonucleotide Tag Pools and PCR Screening in Signature-Tagged Mutagenesis of Essential Genes from Bacteria. BioTechniques, 1999, 26, 473-480.	1.8	55
43	Positive Signature-Tagged Mutagenesis in Pseudomonas aeruginosa: Tracking Patho-Adaptive Mutations Promoting Airways Chronic Infection. PLoS Pathogens, 2011, 7, e1001270.	4.7	55
44	Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping. Frontiers in Microbiology, 2018, 9, 836.	3.5	53
45	Sequence analysis and evolutionary perspectives of ROB-1 beta-lactamase. Antimicrobial Agents and Chemotherapy, 1990, 34, 1354-1359.	3.2	52
46	Rapid quantitation by PCR of endomycorrhizal fungi colonizing roots Genome Research, 1992, 2, 76-80.	5.5	52
47	Transcription of foreign DNA in Escherichia coli. Genome Research, 2008, 18, 1798-1805.	5.5	52
48	Genomics of antibioticâ€resistance prediction in <i>Pseudomonas aeruginosa</i> . Annals of the New York Academy of Sciences, 2019, 1435, 5-17.	3.8	51
49	Peptidoglycan lytic activity of thePseudomonas aeruginosaphage ÆKZ gp144 lytic transglycosylase. FEMS Microbiology Letters, 2007, 266, 201-209.	1.8	50
50	Comparative genomics and biological characterization of sequential Pseudomonas aeruginosa isolates from persistent airways infection. BMC Genomics, 2015, 16, 1105.	2.8	50
51	Site-saturation mutagenesis and three-dimensional modelling of ROB-1 define a substrate binding role of Ser 130 in class A l²-lactamases. Protein Engineering, Design and Selection, 1992, 5, 693-701.	2.1	49
52	Prophage Integrase Typing Is a Useful Indicator of Genomic Diversity in Salmonella enterica. Frontiers in Microbiology, 2017, 8, 1283.	3.5	49
53	Structural and functional characterization of tnpl, a recombinase locus in Tn21 and related beta-lactamase transposons. Journal of Bacteriology, 1990, 172, 3745-3757.	2.2	47
54	Sequencing of the Dutch Elm Disease Fungus Genome Using the Roche/454 GS-FLX Titanium System in a Comparison of Multiple Genomics Core Facilities. Journal of Biomolecular Techniques, 2013, 24, jbt.12-2401-005.	1,5	47

#	Article	IF	CITATIONS
55	The Widespread Multidrug-Resistant Serotype O12 Pseudomonas aeruginosa Clone Emerged through Concomitant Horizontal Transfer of Serotype Antigen and Antibiotic Resistance Gene Clusters. MBio, 2015, 6, e01396-15.	4.1	47
56	Detection of the pathogenic parasite Toxoplasma gondii by specific amplification of ribosomal sequences using comultiplex polymerase chain reaction. Journal of Clinical Microbiology, 1993, 31, 203-207.	3.9	47
57	Increasing genomic diversity and evidence of constrained lifestyle evolution due to insertion sequences in Aeromonas salmonicida. BMC Genomics, 2016, 17, 44.	2.8	46
58	Insights into the Molecular Basis for the Carbenicillinase Activity of PSE-4 β-Lactamase from Crystallographic and Kinetic Studiesâ€. Biochemistry, 2001, 40, 395-402.	2.5	44
59	A Syst-OMICS Approach to Ensuring Food Safety and Reducing the Economic Burden of Salmonellosis. Frontiers in Microbiology, 2017, 8, 996.	3.5	42
60	A Study of 33 Bacteriophages of <i>Rhizobium meliloti</i> . Applied and Environmental Microbiology, 1988, 54, 188-196.	3.1	42
61	Complete Genome Sequence of Persistent Cystic Fibrosis Isolate Pseudomonas aeruginosa Strain RP73. Genome Announcements, 2013, 1, .	0.8	41
62	Characterization of Four Novel Bacteriophages Isolated from British Columbia for Control of Non-typhoidal Salmonella in Vitro and on Sprouting Alfalfa Seeds. Frontiers in Microbiology, 2017, 8, 2193.	3.5	41
63	In vitro reconstruction of the biosynthetic pathway of peptidoglycan cytoplasmic precursor in Pseudomonas aeruginosa. FEMS Microbiology Letters, 2001, 201, 229-235.	1.8	40
64	Identification of novel inhibitors of Pseudomonas aeruginosa MurC enzyme derived from phage-displayed peptide libraries. Journal of Antimicrobial Chemotherapy, 2003, 51, 531-543.	3.0	40
65	A Pan-Genomic Approach to Understand the Basis of Host Adaptation in Achromobacter. Genome Biology and Evolution, 2017, 9, 1030-1046.	2.5	40
66	Comparative genomics of a drug-resistant Pseudomonas aeruginosa panel and the challenges of antimicrobial resistance prediction from genomes. FEMS Microbiology Letters, 2017, 364, .	1.8	40
67	Characterization of the blaCARB-3 gene encoding the carbenicillinase-3 β-lactamase of Pseudomonas aeruginosa. Gene, 1991, 102, 7-12.	2.2	39
68	Molecular basis of antibiotic resistance and \hat{l}^2 -lactamase inhibition by mechanism-based inactivators: perspectives and future directions. FEMS Microbiology Reviews, 2000, 24, 251-262.	8.6	39
69	Peptide inhibitors of the essential cell division protein FtsA. Protein Engineering, Design and Selection, 2005, 18, 85-91.	2.1	39
70	Characterization of Alanine Catabolism in <i>Pseudomonas aeruginosa</i> and Its Importance for Proliferation In Vivo. Journal of Bacteriology, 2009, 191, 6329-6334.	2.2	39
71	The Flagellum of Pseudomonas aeruginosa Is Required for Resistance to Clearance by Surfactant Protein A. PLoS ONE, 2007, 2, e564.	2.5	38
72	Secondary structures and features of the 18S, 5.8S and 26S ribosomal RNAs from the Apicomplexan parasite Toxoplasma gondii. Gene, 1996, 173, 129-135.	2.2	36

ROGER C LEVESQUE

#	Article	IF	CITATIONS
73	Comparative analysis of mitochondrial genomes of geographic variants of the gypsy moth, Lymantria dispar, reveals a previously undescribed genotypic entity. Scientific Reports, 2017, 7, 14245.	3.3	36
74	Parallel solid synthesis of inhibitors of the essential cell division FtsZ enzyme as a new potential class of antibacterials. Bioorganic and Medicinal Chemistry, 2007, 15, 1330-1340.	3.0	35
75	An Organ System-Based Synopsis of <i>Pseudomonas aeruginosa</i> Virulence. Virulence, 2021, 12, 1469-1507.	4.4	35
76	Cloning and expression of the imipenem-hydrolyzing beta-lactamase operon from Pseudomonas maltophilia in Escherichia coli. Antimicrobial Agents and Chemotherapy, 1988, 32, 819-826.	3.2	34
77	Molecular Heterogeneity of the L-1 Metallo-β-Lactamase Family from <i>Stenotrophomonas maltophilia</i> . Antimicrobial Agents and Chemotherapy, 1998, 42, 1245-1248.	3.2	34
78	Identification of in vivo essential genes fromPseudomonas aeruginosaby PCR-based signature-tagged mutagenesis. FEMS Microbiology Letters, 2002, 210, 73-80.	1.8	34
79	Exacerbation induces a microbiota shift in sputa of COPD patients. PLoS ONE, 2018, 13, e0194355.	2.5	34
80	Comparative Signature-Tagged Mutagenesis Identifies Pseudomonas Factors Conferring Resistance to the Pulmonary Collectin SP-A. PLoS Pathogens, 2005, 1, e31.	4.7	33
81	Assessing Pseudomonas aeruginosa Virulence and the Host Response Using Murine Models of Acute and Chronic Lung Infection. Methods in Molecular Biology, 2014, 1149, 757-771.	0.9	33
82	Construction of a DNA probe and detection of Actinobacillus pleuropneumoniae by using polymerase chain reaction. Journal of Clinical Microbiology, 1991, 29, 1183-1187.	3.9	33
83	Discovering essential and infection-related genes. Current Opinion in Microbiology, 2001, 4, 515-519.	5.1	32
84	Genome-wide SNPs resolve phylogenetic relationships in the North American spruce budworm (Choristoneura fumiferana) species complex. Molecular Phylogenetics and Evolution, 2017, 111, 158-168.	2.7	32
85	Assessing the potential of genotypingâ€byâ€sequencingâ€derived single nucleotide polymorphisms to identify the geographic origins of intercepted gypsy moth (<i>Lymantria dispar</i>) specimens: A proofâ€ofâ€concept study. Evolutionary Applications, 2018, 11, 325-339.	3.1	32
86	Diversity and Host Specificity Revealed by Biological Characterization and Whole Genome Sequencing of Bacteriophages Infecting Salmonella enterica. Viruses, 2019, 11, 854.	3.3	32
87	A Multi-Species TaqMan PCR Assay for the Identification of Asian Gypsy Moths (Lymantria spp.) and Other Invasive Lymantriines of Biosecurity Concern to North America. PLoS ONE, 2016, 11, e0160878.	2.5	31
88	Detection of genes essential in specific niches by signature-tagged mutagenesis. Current Opinion in Biotechnology, 2000, 11, 434-439.	6.6	30
89	Composition of the Spruce Budworm (Choristoneura fumiferana) Midgut Microbiota as Affected by Rearing Conditions. PLoS ONE, 2015, 10, e0144077.	2.5	30
90	Hit Identification of New Potent PqsR Antagonists as Inhibitors of Quorum Sensing in Planktonic and Biofilm Grown Pseudomonas aeruginosa. Frontiers in Chemistry, 2020, 8, 204.	3.6	29

#	Article	IF	CITATIONS
91	Evolutionary perspectives on multiresistance beta-lactamase transposons. Journal of Bacteriology, 1989, 171, 6423-6429.	2.2	28
92	Development of natural and synthetic DNA probes for OXA-2 and TEM-1 beta-lactamases. Antimicrobial Agents and Chemotherapy, 1987, 31, 728-734.	3.2	27
93	Cloning, sequencing and expression in Escherichia coli of the ptsl gene encoding enzyme I of the phosphoenolpyruvate:sugar phosphotransferase transport system from Streptococcus salivarius. Gene, 1992, 121, 71-78.	2.2	26
94	Requirement of the Pseudomonas aeruginosa CbrA Sensor Kinase for Full Virulence in a Murine Acute Lung Infection Model. Infection and Immunity, 2014, 82, 1256-1267.	2.2	26
95	Temporal variation in spatial genetic structure during population outbreaks: Distinguishing among different potential drivers of spatial synchrony. Evolutionary Applications, 2019, 12, 1931-1945.	3.1	26
96	Pseudomonas aeruginosa MurE amide ligase: enzyme kinetics and peptide inhibitor. Biochemical Journal, 2009, 421, 263-272.	3.7	25
97	A specific peptide inhibitor of the class B metallo-β-lactamase L-1 from Stenotrophomonas maltophilia identified using phage display. Journal of Antimicrobial Chemotherapy, 2005, 55, 252-255.	3.0	24
98	Molecular distribution of ROB-1 beta-lactamase in Actinobacillus pleuropneumoniae. Antimicrobial Agents and Chemotherapy, 1991, 35, 1397-1402.	3.2	23
99	Molecular cloning, complete sequence of the small subunit ribosomal RNA coding region and phylogeny of Toxoplasma gondii. Molecular and Biochemical Parasitology, 1993, 60, 145-148.	1.1	23
100	Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF. BMC Biochemistry, 2008, 9, 33.	4.4	23
101	Two's company, three's a crowd: new insights on spruce budworm species boundaries using genotypingâ€byâ€sequencing in an integrative species assessment (Lepidoptera: Tortricidae). Systematic Entomology, 2017, 42, 317-328.	3.9	23
102	Species interactions and distinct microbial communities in high Arctic permafrost affected cryosols are associated with the CH ₄ and CO ₂ gas fluxes. Environmental Microbiology, 2019, 21, 3711-3727.	3.8	23
103	The Salmonella enterica Plasmidome as a Reservoir of Antibiotic Resistance. Microorganisms, 2020, 8, 1016.	3.6	23
104	Physical mapping of 32 genetic markers on the Pseudomonas aeruginosa PAO1 chromosome. Microbiology (United Kingdom), 1996, 142, 79-86.	1.8	22
105	ASD-GFP Vectors for In Vivo Expression Technology in <i>Pseudomonas aeruginosa</i> and Other Gram-Negative Bacteria. BioTechniques, 1998, 24, 261-264.	1.8	22
106	Structure of CARB-4 and AER-1 CarbenicillinHydrolyzing β-Lactamases. Antimicrobial Agents and Chemotherapy, 1998, 42, 1966-1972.	3.2	22
107	Selection of peptide inhibitors against the Pseudomonas aeruginosa MurD cell wall enzyme. Peptides, 2006, 27, 1693-1700.	2.4	22
108	Molybdate transporter ModABC is important for Pseudomonas aeruginosa chronic lung infection. BMC Research Notes, 2016, 9, 23.	1.4	22

#	Article	IF	CITATIONS
109	Culture-Dependent Bioprospecting of Bacterial Isolates From the Canadian High Arctic Displaying Antibacterial Activity. Frontiers in Microbiology, 2019, 10, 1836.	3.5	22
110	Design and Evaluation of New Quinazolin-4(3 <i>H</i>)-one Derived PqsR Antagonists as Quorum Sensing Quenchers in <i>Pseudomonas aeruginosa</i> . ACS Infectious Diseases, 2021, 7, 2666-2685.	3.8	22
111	Comparative study of the beta-lactamase activity found in <i>Achromobacter</i> . Canadian Journal of Microbiology, 1983, 29, 819-826.	1.7	21
112	<i>Pseudomonas aeruginosa</i> PA01 Bacterial Artificial Chromosomes: Strategies for Mapping, Screening, and Sequencing 100 kb Loci of the 5.9 Mb Genome. Microbial & Comparative Genomics, 1998, 3, 105-117.	0.4	21
113	A peptide inhibitor of MurA UDP-N-acetylglucosamine enolpyruvyl transferase: The first committed step in peptidoglycan biosynthesis. Peptides, 2006, 27, 3115-3121.	2.4	21
114	Genomic characterization of environmental Pseudomonas aeruginosa isolated from dental unit waterlines revealed the insertion sequence ISPa11 as a chaotropic element. FEMS Microbiology Ecology, 2017, 93, .	2.7	21
115	Phenomic and genomic approaches to studying the inhibition of multiresistant <scp><i>Salmonella enterica</i></scp> by microcin <scp>J25</scp> . Environmental Microbiology, 2020, 22, 2907-2920.	3.8	21
116	Continentâ€wide population genomic structure and phylogeography of North America's most destructive conifer defoliator, the spruce budworm (<i>Choristoneura fumiferana</i>). Ecology and Evolution, 2020, 10, 914-927.	1.9	21
117	Mapping of a plasmid (pLQ3) from Achromobacter and cloning of its cephalosporinase gene in Escherichia coli. Gene, 1982, 18, 69-75.	2.2	20
118	Structure-Function Studies of Ser-289 in the Class C β-Lactamase from <i>Enterobacter cloacae</i> P99. Antimicrobial Agents and Chemotherapy, 1999, 43, 543-548.	3.2	20
119	Combinatorial enzymatic assay for the screening of a new class of bacterial cell wall inhibitors. Bioorganic and Medicinal Chemistry, 2003, 11, 1583-1592.	3.0	19
120	Inactivation of Salmonella enterica on post-harvest cantaloupe and lettuce by a lytic bacteriophage cocktail. Current Research in Food Science, 2020, 2, 25-32.	5.8	19
121	Identification of Pseudomonas aeruginosa FtsZ peptide inhibitors as a tool for development of novel antimicrobials. Journal of Antimicrobial Chemotherapy, 2004, 54, 278-280.	3.0	18
122	Functional genomics of PycR, a LysR family transcriptional regulator essential for maintenance of Pseudomonas aeruginosa in the rat lung. Microbiology (United Kingdom), 2008, 154, 2106-2118.	1.8	18
123	Genes Required for Free Phage Production are Essential for <i>Pseudomonas aeruginosa</i> Chronic Lung Infections. Journal of Infectious Diseases, 2016, 213, 395-402.	4.0	17
124	Complete Genome Sequences of Two Phage-Like Plasmids Carrying the CTX-M-15 Extended-Spectrum β-Lactamase Gene. Genome Announcements, 2017, 5, .	0.8	17
125	Gene-Gene Interactions Dictate Ciprofloxacin Resistance in Pseudomonas aeruginosa and Facilitate Prediction of Resistance Phenotype from Genome Sequence Data. Antimicrobial Agents and Chemotherapy, 2021, 65, e0269620.	3.2	16
126	Complete Genome Sequences of Three Pseudomonas aeruginosa Isolates with Phenotypes of Polymyxin B Adaptation and Inducible Resistance. Journal of Bacteriology, 2012, 194, 529-530.	2.2	15

#	Article	IF	CITATIONS
127	Draft Genome Sequences of Two Lipopeptide-Producing Strains of Bacillus methylotrophicus. Genome Announcements, 2015, 3, .	0.8	15
128	Prophage induction reduces Shiga toxin producing Escherichia coli (STEC) and Salmonella enterica on tomatoes and spinach: A model study. Food Control, 2018, 89, 250-259.	5.5	15
129	Similar yet different: phylogenomic analysis to delineate Salmonella and Citrobacter species boundaries. BMC Genomics, 2020, 21, 377.	2.8	15
130	Model-Based Drug Development in Pulmonary Delivery: Pharmacokinetic Analysis of Novel Drug Candidates for Treatment of Pseudomonas aeruginosa Lung Infection. Journal of Pharmaceutical Sciences, 2019, 108, 630-640.	3.3	14
131	Comparative genomic analysis of 142 bacteriophages infecting Salmonella enterica subsp. enterica. BMC Genomics, 2020, 21, 374.	2.8	14
132	Genome evolution drives transcriptomic and phenotypic adaptation in Pseudomonas aeruginosa during 20 years of infection. Microbial Genomics, 2021, 7, .	2.0	14
133	Bacteriophage-Insensitive Mutants of Antimicrobial-Resistant Salmonella Enterica are Altered in their Tetracycline Resistance and Virulence in Caco-2 Intestinal Cells. International Journal of Molecular Sciences, 2020, 21, 1883.	4.1	13
134	Insights into the Structure of the Spruce Budworm (<i>Choristoneura fumiferana</i>) Genome, as Revealed by Molecular Cytogenetic Analyses and a High-Density Linkage Map. G3: Genes, Genomes, Genetics, 2018, 8, 2539-2549.	1.8	12
135	Fate of 43 Salmonella Strains on Lettuce and Tomato Seedlings. Journal of Food Protection, 2019, 82, 1045-1051.	1.7	12
136	Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain. Microbial Genomics, 2021, 7, .	2.0	12
137	β-lactamases: clinical and genetic perspectives. Journal of Antimicrobial Chemotherapy, 1983, 12, 529-532.	3.0	11
138	BAC library construction, screening and clone sequencing of lake whitefish (<i>Coregonus) Tj ETQq0 0 0 rgBT /O Ecology Resources, 2011, 11, 541-549.</i>	verlock 1(4.8	0 Tf 50 307 To 11
139	Glycoside hydrolase family 32 is present in Bacillus subtilis phages. Virology Journal, 2015, 12, 157.	3.4	11
140	Convergent herbivory on conifers by Choristoneura moths after boreal forest formation. Molecular Phylogenetics and Evolution, 2018, 123, 35-43.	2.7	11
141	A new approach to study attached biofilms and floating communities from Pseudomonas aeruginosa strains of various origins reveals diverse effects of divalent ions. FEMS Microbiology Letters, 2018, 365, .	1.8	11
142	Letter to the Editor:1H,13C and15N backbone resonance assignments for TEM-1, a 28.9ÅkDa β-lactamase from E.Âcoli. Journal of Biomolecular NMR, 2004, 29, 433-434.	2.8	10
143	Reservoirs of resistance: polymyxin resistance in veterinaryâ€associated companion animal isolates of <i>Pseudomonas aeruginosa</i> . Veterinary Record, 2019, 185, 206-206.	0.3	10
144	Characterization of a PSE-4 Mutant with Different Properties in Relation to Penicillanic Acid Sulfones: Importance of Residues 216 to 218 in Class A β-Lactamases. Antimicrobial Agents and Chemotherapy, 1998, 42, 2319-2325.	3.2	9

ROGER C LEVESQUE

#	Article	IF	CITATIONS
145	Roles of Amino Acids 161 to 179 in the PSE-4 Ω Loop in Substrate Specificity and in Resistance to Ceftazidime. Antimicrobial Agents and Chemotherapy, 1998, 42, 2576-2583.	3.2	9
146	Cloning, over-expression and purification ofPseudomonas aeruginosa murCencoding uridine diphosphateN-acetylmuramate: L-alanine ligase. FEMS Microbiology Letters, 2000, 183, 281-288.	1.8	9
147	Identification of Novel Pathogenicity Genes by PCR Signature-Tagged Mutagenesis and Related Technologies. , 2004, 266, 289-304.		9
148	Combining Whole-Genome Sequencing and Multimodel Phenotyping To Identify Genetic Predictors of <i>Salmonella</i> Virulence. MSphere, 2020, 5, .	2.9	9
149	Expansion of LINEs and species-specific DNA repeats drives genome expansion in Asian Gypsy Moths. Scientific Reports, 2019, 9, 16413.	3.3	8
150	Model-Informed Drug Development in Pulmonary Delivery: Semimechanistic Pharmacokinetic–Pharmacodynamic Modeling for Evaluation of Treatments against Chronic <i>Pseudomonas aeruginosa</i> Lung Infections. Molecular Pharmaceutics, 2020, 17, 1458-1469.	4.6	8
151	A New Whole Genome Culture-Independent Diagnostic Test (WG-CIDT) for Rapid Detection of Salmonella in Lettuce. Frontiers in Microbiology, 2020, 11, 602.	3.5	8
152	Genomics of Banchine Ichnoviruses. , 2012, , 79-87.		8
153	A colposcopical lesion of the uterine cervix frequently associated with papillomavirus type 16 as detected byin situ and southern blot hybridization: A cytohistological correlation study. International Journal of Cancer, 1988, 41, 531-536.	5.1	7
154	Characteristics and comparative study of fiveRhizobium meliloti bacteriophages. Current Microbiology, 1989, 18, 307-311.	2.2	7
155	Evaluation of inhibition of the carbenicillin-hydrolyzing \hat{I}^2 -lactamase PSE-4 by the clinically used mechanism-based inhibitors. FEBS Letters, 2000, 470, 285-292.	2.8	7
156	Broad-Host-Range Mobilizable Suicide Vectors for Promoter Trapping in Gram-Negative Bacteria. BioTechniques, 2002, 33, 1038-1043.	1.8	7
157	Distinct sources of gene flow produce contrasting population genetic dynamics at different range boundaries of a <i>Choristoneura</i> budworm. Molecular Ecology, 2017, 26, 6666-6684.	3.9	7
158	A needle in a haystack: a multigene TaqMan assay for the detection of Asian gypsy moths in bulk pheromone trap samples. Biological Invasions, 2019, 21, 1843-1856.	2.4	7
159	Structural insights into the putative bacterial acetylcholinesterase ChoE and its substrate inhibition mechanism. Journal of Biological Chemistry, 2020, 295, 8708-8724.	3.4	7
160	The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Advances in Microbial Physiology, 2021, 79, 25-88.	2.4	7
161	Letter to the Editor. Journal of Biomolecular NMR, 2006, 36, 11-11.	2.8	6
162	Biophysical studies of the interactions between the phage ϕKZ gp144 lytic transglycosylase and model membranes. European Biophysics Journal, 2010, 39, 263-276.	2.2	6

#	Article	IF	CITATIONS
163	Cyclic peptides identified by phage display are competitive inhibitors of the tRNA-dependent amidotransferase of Helicobacter pylori. Peptides, 2016, 79, 8-15.	2.4	6
164	Reassessment of the status of <i>Lymantria albescens</i> and <i>Lymantria postalba</i> (Lepidoptera:) Tj ETQq sequence data. Systematic Entomology, 2020, 45, 493-504.	0 0 0 rgBT 3.9	/Overlock 10 6
165	Novel antimicrobial anionic cecropins from the spruce budworm feature a <scp>polyâ€L</scp> â€aspartic acid Câ€terminus. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1205-1215.	2.6	6
166	Essential Genes in the Infection Model of Pseudomonas aeruginosa PCR-Based Signature-Tagged Mutagenesis. Methods in Molecular Biology, 2008, 416, 61-82.	0.9	6
167	Development of gene probes and evolutionary relationships of the PSE-4 bla gene to plasmid-mediated β-lactamases of gram-negative bacteria. Molecular and Cellular Probes, 1989, 3, 179-188.	2.1	5
168	Homology between the genes of octopine catabolism of Rhizobium meliloti A3 and corresponding genes from the Ti plasmid. Canadian Journal of Microbiology, 1993, 39, 1041-1050.	1.7	5
169	Structure–function analysis of α-helix H4 using PSE-4 as a model enzyme representative of class A β-lactamases. Protein Engineering, Design and Selection, 2000, 13, 267-274.	2.1	5
170	Bacteriophage-Induced Lipopolysaccharide Mutations in Escherichia coli Lead to Hypersensitivity to Food Grade Surfactant Sodium Dodecyl Sulfate. Antibiotics, 2020, 9, 552.	3.7	5
171	Sequencing, assembly and annotation of the whole-insect genome of <i>Lymantria dispar dispar</i> , the European gypsy moth. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	5
172	Salmonella enterica subsp. enterica virulence potential can be linked to higher survival within a dynamic in vitro human gastrointestinal model. Food Microbiology, 2022, 101, 103877.	4.2	5
173	PCR Screening in Signature-Tagged Mutagenesis of Essential Genes. , 2002, 192, 225-234.		4
174	Polymerase Chain Reaction-Based Signature-Tagged Mutagenesis. , 2002, 182, 127-137.		4
175	In Vivo Functional Genomics of Pseudomonas: PCR-Based Signature-Tagged Mutagenesis. , 2006, , 99-120.		4
176	Essential Genes in the Infection Model of Pseudomonas aeruginosa-PCR-Based Signature-Tagged Mutagenesis. Methods in Molecular Biology, 2015, 1279, 97-123.	0.9	4
177	Strategies for isolation of in vivo expressed genes from bacteria. FEMS Microbiology Reviews, 1999, 23, 69-91.	8.6	4
178	Genomics of the 35-kb pvd locus and analysis of novel pvdlJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. FEMS Microbiology Letters, 2000, 190, 141-146.	1.8	4
179	Application of a High-Throughput Targeted Sequence AmpliSeq Procedure to Assess the Presence and Variants of Virulence Genes in Salmonella. Microorganisms, 2022, 10, 369.	3.6	4
180	Liverpool Epidemic Strain Isolates of Pseudomonas aeruginosa Display High Levels of Antimicrobial Resistance during Both Planktonic and Biofilm Growth. Microbiology Spectrum, 2022, 10, .	3.0	4

#	Article	IF	CITATIONS
181	Strategy for Genome Sequencing Analysis and Assembly for Comparative Genomics of Pseudomonas Genomes. Methods in Molecular Biology, 2014, 1149, 565-577.	0.9	3
182	Draft Genome Sequence of Triclosan-Resistant Cystic Fibrosis Isolate Achromobacter xylosoxidans CF304. Genome Announcements, 2015, 3, .	0.8	3
183	Genomic and phenotypic analysis of SspH1 identifies a new <i>Salmonella</i> effector, SspH3. Molecular Microbiology, 2022, 117, 770-789.	2.5	3
184	The Spruce Budworm Genome: Reconstructing the Evolutionary History of Antifreeze Proteins. Genome Biology and Evolution, 2022, 14, .	2.5	3
185	Toxoplasma gondii:Structure and Characterization of the 26S Ribosomal RNA and Peptidyl Transferase Domain. Experimental Parasitology, 1996, 83, 346-351.	1.2	2
186	Cell Culture Tracking by Multivariate Analysis of Raw LCMS Data. Applied Biochemistry and Biotechnology, 2012, 167, 474-488.	2.9	2
187	AnCo3, a New Member of the Emerging Family of Phage-Like Plasmids. Genome Announcements, 2017, 5, .	0.8	2
188	Whole-Genome Sequencing of Lactobacillus Species from Two Commercial Probiotic Products. Genome Announcements, 2017, 5, .	0.8	2
189	Direct In Vivo Microbial Transcriptomics During Infection. Trends in Microbiology, 2018, 26, 732-735.	7.7	2
190	Major Release of 161 Whole-Genome Sequences from the International Pseudomonas Consortium Database. Microbiology Resource Announcements, 2019, 8, .	0.6	2
191	The Pseudomonas aeruginosa Population among Cystic Fibrosis Patients in Quebec, Canada: a Disease Hot Spot without Known Epidemic Isolates. Journal of Clinical Microbiology, 2019, 57, .	3.9	2
192	Reuse of voucher specimens provides insights into the genomic associations and taxonomic value of wing colour and genitalic differences in a pest group (Lepidoptera: Tortricidae: Choristoneura). Systematic Entomology, 2020, 45, 583-593.	3.9	2
193	Signature-Tagged Mutagenesis. Methods in Molecular Biology, 2014, 1149, 541-554.	0.9	1
194	Tracking <i>Salmonella</i> Enteritidis in the Genomics Era: Clade Definition Using a SNP-PCR Assay and Implications for Population Structure. , 0, , .		1
195	For the Safety of Fresh Produce: Regulatory Considerations for Canada on the Use of Whole Genome Sequencing to Subtype Salmonella. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	0
196	A multi-host approach to identify a transposon mutant of Pseudomonas aeruginosa LESB58 lacking full virulence. BMC Research Notes, 2018, 11, 198.	1.4	0
197	Complete Genome Sequence of a Pseudomonas Species Isolated from Tailings Pond Water in Alberta, Canada. Microbiology Resource Announcements, 2021, 10, .	0.6	0