Janice M Lord

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1587650/publications.pdf

Version: 2024-02-01

279798 182427 2,793 79 23 51 citations h-index g-index papers 84 84 84 3519 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative ecology of seed size and dispersal. Philosophical Transactions of the Royal Society B: Biological Sciences, 1996, 351, 1309-1318.	4.0	549
2	On Misinterpreting the `Phylogenetic Correction'. Journal of Ecology, 1995, 83, 531.	4.0	346
3	Scale and the Spatial Concept of Fragmentation. Conservation Biology, 1990, 4, 197-202.	4.7	183
4	Seed Size and Phylogeny in Six Temperate Floras: Constraints, Niche Conservatism, and Adaptation. American Naturalist, 1995, 146, 349-364.	2.1	180
5	Further Remarks on Phylogenetic Correction. Journal of Ecology, 1995, 83, 727.	4.0	105
6	Flower color influences insect visitation in alpine New Zealand. Ecology, 2010, 91, 2638-2649.	3.2	96
7	Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage?. Oecologia, 2005, 144, 245-256.	2.0	88
8	Larger seeds in tropical floras: consistent patterns independent of growth form and dispersal mode. Journal of Biogeography, 1997, 24, 205-211.	3.0	87
9	Leaf colour polymorphisms: a balance between plant defence and photosynthesis. Journal of Ecology, 2016, 104, 104-113.	4.0	78
10	Frugivore gape size and the evolution of fruit size and shape in southern hemisphere floras. Austral Ecology, 2004, 29, 430-436.	1.5	77
11	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	5. 3	73
12	Importance of including cultural practices in ecological restoration. Conservation Biology, 2017, 31, 1109-1118.	4.7	66
13	Hymenopteran pollinators as agents of selection on flower colour in the New Zealand mountains: salient chromatic signals enhance flower discrimination. New Zealand Journal of Botany, 2013, 51, 181-193.	1.1	42
14	The relative importance of solitary bees and syrphid flies as pollinators of two outcrossing plant species in the New Zealand alpine. Austral Ecology, 2013, 38, 169-176.	1.5	41
15	Pollination and seed dispersal inFreycinetia baueriana, a dioecious liane that has lost its bat pollinator. New Zealand Journal of Botany, 1991, 29, 83-86.	1.1	37
16	Patterns in floral traits and plant breeding systems on Southern Ocean Islands. AoB PLANTS, 2015, 7, plv095.	2.3	34
17	The New Zealand experience of varroa invasion highlights research opportunities for Australia. Ambio, 2015, 44, 694-704.	5.5	32
18	Accessory costs of seed production. Oecologia, 2006, 150, 310-317.	2.0	30

#	Article	IF	Citations
19	Variation in <i>Festuca novae-zelandiae</i> (Hack.) Cockayne germination behaviour with altitude of seed source. New Zealand Journal of Botany, 1994, 32, 227-235.	1.1	28
20	Redesigning a curriculum for inquiry: an ecology case study. Instructional Science, 2011, 39, 721-735.	2.0	28
21	Where have all the blue flowers gone: pollinator responses and selection on flower colour in New Zealand <i>Wahlenbergia albomarginata</i>). Journal of Evolutionary Biology, 2012, 25, 352-364.	1.7	28
22	Floral biology and flower visitors on subantarctic Campbell Island. New Zealand Journal of Botany, 2013, 51, 168-180.	1.1	27
23	Foliar freezing resistance of Australian alpine plants over the growing season. Austral Ecology, 2013, 38, 152-161.	1.5	26
24	Correlations between growth form, habitat, and fruit colour in the New Zealand flora, with reference to frugivory by lizards. New Zealand Journal of Botany, 2001, 39, 567-576.	1.1	22
25	Microhabitat selection and seasonality of alpine invertebrates. Pedobiologia, 2001, 45, 107-120.	1.2	20
26	ACCESSORY COSTS OF SEED PRODUCTION AND THE EVOLUTION OF ANGIOSPERMS. Evolution; International Journal of Organic Evolution, 2012, 66, 200-210.	2.3	20
27	Ecological Responses to 52 Years of Experimental Snow Manipulation in High-Alpine Cushionfield, Old Man Range, South-Central New Zealand. Arctic, Antarctic, and Alpine Research, 2015, 47, 751-772.	1.1	20
28	Have frugivores influenced the evolution of fruit traits in New Zealand?., 2002, , 55-68.		20
29	Functional and performance comparisons of invasive Hieracium lepidulum and co-occurring species in New Zealand. Austral Ecology, 2007, 32, 338-354.	1.5	19
30	Overâ€collecting: an overlooked factor in the decline of plant taxa. Taxon, 1994, 43, 181-185.	0.7	15
31	Seed production in <i>Festuca novaeâ€zelandiae:</i> The effect of altitude and preâ€dispersal predation. New Zealand Journal of Botany, 1999, 37, 503-509.	1.1	15
32	Rediscovery of pycnidia in <i>Thamnolia vermicularis</i> iiiplications for chemotype occurrence and distribution. Lichenologist, 2013, 45, 397-411.	0.8	15
33	Recent colonisation byNothofagus fuscaat Cass, Canterbury. New Zealand Journal of Botany, 1993, 31, 139-146.	1.1	14
34	Does clonal fragmentation contribute to recruitment inFestuca novae-zelandiae?. New Zealand Journal of Botany, 1993, 31, 133-138.	1.1	14
35	Fleshy-fruitedness in the New Zealand flora. Journal of Biogeography, 1999, 26, 1249-1253.	3.0	14
36	Community reassembly: a test using limestone grassland in New Zealand. Ecology Letters, 2000, 3, 213-218.	6.4	14

#	Article	IF	CITATIONS
37	Does disturbance, competition or resource limitation underlie <i>Hieracium lepidulum</i> invasion in New Zealand? Mechanisms of establishment and persistence, and functional differentiation among invasive and native species. Austral Ecology, 2010, 35, 282-293.	1.5	14
38	Comparative transcriptome analysis of the wild-type model apomict Hieracium praealtum and its loss of parthenogenesis (lop) mutant. BMC Plant Biology, 2018, 18, 206.	3.6	14
39	Doubled Haploid  CUDH2107' as a Reference for Bulb Onion (Allium cepa L.) Research: Development of a Transcriptome Catalogue and Identification of Transcripts Associated with Male Fertility. PLoS ONE, 2016, 11, e0166568.	2.5	14
40	Comparative winter frost resistance of plant species from southern Africa, Australia, New Zealand, and South America grown in a common environment (Dunedin, New Zealand). New Zealand Journal of Botany, 2006, 44, 109-119.	1.1	13
41	Plant community response following the removal of the invasive <i>Lupinus arboreus</i> in a coastal dune system. Restoration Ecology, 2015, 23, 607-614.	2.9	13
42	Leaf and floral heating in cold climates: do sub-Antarctic megaherbs resemble tropical alpine giants?. Polar Research, 2016, 35, 26030.	1.6	13
43	Polarized Light Microscopy: An Old Technique Casts New Light on MÄori Textile Plants. Archaeometry, 2017, 59, 965-979.	1.3	13
44	Agamospermous seed production of the invasive tussock grass Nardus stricta L. (Poaceae) in New Zealand – evidence from pollination experiments. Flora: Morphology, Distribution, Functional Ecology of Plants, 2006, 201, 144-151.	1.2	12
45	Nutrient stress and performance of invasive Hieracium lepidulum and co-occurring species in New Zealand. Basic and Applied Ecology, 2006, 7, 320-333.	2.7	12
46	Floral usage partitioning and competition between social (<i>Apis mellifera</i> , <i>Bombus) Tj ETQq0 0 0 rgBT /C Ecology, 2018, 43, 937-948.</i>	Overlock 10 1.5	Tf 50 387
47	Characterization of the mating-type locus (MAT) reveals a heterothallic mating system inKnightiella splachnirima. Lichenologist, 2017, 49, 373-385.	0.8	11
48	Restoration of southern hemisphere beech (Nothofagaceae) forests: a metaâ€analysis. Restoration Ecology, 2021, 29, e13333.	2.9	10
49	Does current climate explain plant disjunctions? A test using the New Zealand alpine flora. Journal of Biogeography, 2018, 45, 1490-1499.	3.0	9
50	Are introduced plants a threat to native pollinator services in montane–alpine environments?. Alpine Botany, 2018, 128, 179-189.	2.4	9
51	First record of a vascular plant from the Bounty Islands: <i>Lepidium oleraceum</i> (nau, Cook's) Tj ETQq1 1 0.78-	4314 rgBT 1:1	/Qverlock 1
52	In a world of white, flower colour matters: A white–purple transition signals lack of reward in an alpine <scp><i>E</i></scp> <i>uphrasia</i> . Austral Ecology, 2015, 40, 701-708.	1.5	8
53	Slow community responses but rapid species responses 14 years after alpine turf transplantation among snow cover zones, south–central New Zealand. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 51-61.	2.7	8
54	Integrating agroecology and sustainable tourism: applying geodesign to farm management in Aotearoa New Zealand. Journal of Sustainable Tourism, 2018, 26, 1543-1561.	9.2	8

#	Article	IF	Citations
55	Iron and zinc content ofhormosira banksiiin New Zealand. New Zealand Journal of Marine and Freshwater Research, 2004, 38, 73-85.	2.0	7
56	A test for phylogenetic conservatism in plantâ€pollinator relationships in Australian and New Zealand alpine floras. New Zealand Journal of Botany, 2008, 46, 367-372.	1.1	7
57	Long-lived seed banks of Ammophila arenaria prolong dune restoration programs. Journal of Coastal Conservation, 2019, 23, 461-471.	1.6	7
58	Applying spatial analysis to the agroecology-led management of an indigenous farm in New Zealand. Ecological Informatics, 2016, 31, 49-58.	5.2	6
59	Plant–pollinator interactions affect colonization efficiency: abundance of blue-purple flowers is correlated with species richness of bumblebees in the Arctic. Biological Journal of the Linnean Society, 2017, 121, 150-162.	1.6	6
60	Does the invaderHieracium lepidulumhave a comparative growth advantage over co-occurring plants? High leaf area and low metabolic costs as invasive traits. New Zealand Journal of Botany, 2009, 47, 395-403.	1.1	5
61	Use and Identification of <i>Tikumu < /i> (<i>Celmisia < /i> Species, Asteraceae) in Artifacts of New Zealand Origin. Journal of the American Institute for Conservation, 2010, 49, 69-82.</i></i>	0.5	5
62	Downwind Sedimentation and Habitat Development Following Ammophila arenaria Removal and Dune Erosion, Mason Bay, New Zealand. Journal of Coastal Research, 2016, 75, 268-272.	0.3	5
63	Phenylanthraquinones and flavone-C-glucosides from the disjunct Bulbinella in New Zealand. Phytochemistry, 2017, 134, 64-70.	2.9	5
64	Invasion ecology of the alien tussock grass <i>Nardus stricta</i> (Poaceae) at Lake Pukaki, Canterbury, New Zealand. New Zealand Journal of Botany, 2005, 43, 601-612.	1.1	4
65	<p>Pacifigeron indivisus (Asteraceae: Astereae), a new species endemic to Rapa, Austral Islands, and a new delimitation of the Celmisia group</p> . Phytotaxa, 2020, 442, 239-266.	0.3	4
66	Hermaphroditism and dichogamy in <i>Stilbocarpa polaris</i> (Araliaceae) on Campbell Island. New Zealand Journal of Botany, 2012, 50, 89-93.	1.1	3
67	<p>Nomenclatural priority of the genus Linochilus over Piofontia (Asteraceae: Astereae)</p> . Phytotaxa, 2019, 424, 158-166.	0.3	3
68	Are moths the missing pollinators in Subantarctic New Zealand?. Polar Research, 2019, 38, .	1.6	3
69	Nature of Alpine Ecosystems in Temperate Mountains of New Zealand. , 2020, , 335-348.		2
70	Spore viability and germination of some ectomycorrhizal fungi from New Zealand and implications for forest restoration. New Zealand Journal of Botany, 2021, 59, 250-266.	1.1	2
71	The secret service $\hat{a} \in \hat{a}$ analysis of the available knowledge on moths as pollinators in New Zealand. , 2018, , .		2
72	Variation in reproductive investment and floret gender ratios in two gynodioecious mat daisies (<i>Raoulia</i> , Asteraceae). New Zealand Journal of Botany, 2016, 54, 74-86.	1.1	1

#	Article	IF	CITATIONS
73	A molecular-genetic reassessment of the circumscription of the lichen genus Icmadophila. Lichenologist, 2020, 52, 213-220.	0.8	1
74	Honey bees do not displace foraging bumble bees on nectar-rich artificial flowers. Apidologie, 2020, 51, 137-146.	2.0	1
75	Moths can transfer pollen between flowers under experimental conditions. New Zealand Journal of Ecology, 0, , .	1.1	1
76	Mr Cocker's Benger Burn discoveries: A tussock rain cape from Central Otago, New Zealand, re-Examined. Journal of the Polynesian Society, 2012, 121, 373-392.	0.2	1
77	Flammability trajectories following destocking and forestation: a case study in the New Zealand high country. Restoration Ecology, 2022, 30, .	2.9	1
78	A Generic Taxonomic Synopsis of the <i>Pleurophyllum </i> Clade (Asteraceae: Astereae: Celmisiinae) with the Recognition of the New Zealand Endemic New Genus <i>Macrolearia </i> Systematic Botany, 2022, 47, 607-634.	0.5	1
79	Comment: Clintonia's Unique Embryology Not Apomixis. International Journal of Plant Sciences, 2009, 170, 699-699.	1.3	0