Sue L Jaspersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1587003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive structure and functional adaptations of the yeast nuclear pore complex. Cell, 2022, 185, 361-378.e25.	28.9	87
2	Quantitative analysis of nuclear pore complex organization in <i>Schizosaccharomyces pombe</i> . Life Science Alliance, 2022, 5, e202201423.	2.8	13
3	Split-GFP Complementation to Study the Nuclear Membrane Proteome Using Microscopy. Methods in Molecular Biology, 2022, 2502, 205-213.	0.9	0
4	Anatomy of the fungal microtubule organizing center, the spindle pole body. Current Opinion in Structural Biology, 2021, 66, 22-31.	5.7	14
5	Redistribution of centrosomal proteins by centromeres and Polo kinase controls partial nuclear envelope breakdown in fission yeast. Molecular Biology of the Cell, 2021, 32, 1487-1500.	2.1	6
6	A distinct inner nuclear membrane proteome in <i>Saccharomyces cerevisiae</i> gametes. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	3
7	A mutation in budding yeast affecting nuclear envelope insertion of the spindle pole body. MicroPublication Biology, 2021, 2021, .	0.1	1
8	Factors promoting nuclear envelope assembly independent of the canonical ESCRT pathway. Journal of Cell Biology, 2020, 219, .	5.2	29
9	SWR1-Independent Association of H2A.Z to the LINC Complex Promotes Meiotic Chromosome Motion. Frontiers in Cell and Developmental Biology, 2020, 8, 594092.	3.7	10
10	High-Throughput Identification of Nuclear Envelope Protein Interactions in <i>Schizosaccharomyces pombe</i> Using an Arrayed Membrane Yeast-Two Hybrid Library. G3: Genes, Genomes, Genetics, 2020, 10, 4649-4663.	1.8	9
11	Orderly assembly underpinning built-in asymmetry in the yeast centrosome duplication cycle requires cyclin-dependent kinase. ELife, 2020, 9, .	6.0	5
12	Super-resolution Microscopy-based Bimolecular Fluorescence Complementation to Study Protein Complex Assembly and Co-localization. Bio-protocol, 2020, 10, e3524.	0.4	2
13	The role of gene dosage in budding yeast centrosome scaling and spontaneous diploidization. PLoS Genetics, 2020, 16, e1008911.	3.5	5
14	Distribution of Proteins at the Inner Nuclear Membrane Is Regulated by the Asi1 E3 Ligase in <i>Saccharomyces cerevisiae</i> . Genetics, 2019, 211, 1269-1282.	2.9	25
15	Patrolling the nucleus: inner nuclear membrane-associated degradation. Current Genetics, 2019, 65, 1099-1106.	1.7	24
16	Yeast centrosome components form a noncanonical LINC complex at the nuclear envelope insertion site. Journal of Cell Biology, 2019, 218, 1478-1490.	5.2	33
17	Structure and function of Spc42 coiled-coils in yeast centrosome assembly and duplication. Molecular Biology of the Cell, 2019, 30, 1505-1522.	2.1	7
18	To Make a Long Spindle Short: Nuclear Envelope Breakdown during Meiosis. Cell Reports, 2018, 23, 931-932.	6.4	3

SUE L JASPERSEN

#	Article	IF	CITATIONS
19	Key phosphorylation events in Spc29 and Spc42 guide multiple steps of yeast centrosome duplication. Molecular Biology of the Cell, 2018, 29, 2280-2291.	2.1	3
20	The half-bridge component Kar1 promotes centrosome separation and duplication during budding yeast meiosis. Molecular Biology of the Cell, 2018, 29, 1798-1810.	2.1	4
21	Functional Analysis of the Yeast LINC Complex Using Fluctuation Spectroscopy and Super-Resolution Imaging. Methods in Molecular Biology, 2018, 1840, 137-161.	0.9	10
22	The budding yeast RSC complex maintains ploidy by promoting spindle pole body insertion. Journal of Cell Biology, 2018, 217, 2445-2462.	5.2	9
23	Molecular model of fission yeast centrosome assembly determined by superresolution imaging. Journal of Cell Biology, 2017, 216, 2409-2424.	5.2	41
24	Big Lessons from Little Yeast: Budding and Fission Yeast Centrosome Structure, Duplication, and Function. Annual Review of Genetics, 2017, 51, 361-383.	7.6	52
25	wtf genes are prolific dual poison-antidote meiotic drivers. ELife, 2017, 6, .	6.0	106
26	Analysis of membrane proteins localizing to the inner nuclear envelope in living cells. Journal of Cell Biology, 2016, 215, 575-590.	5.2	78
27	Whole-Genome Analysis of Individual Meiotic Events in <i>Drosophila melanogaster</i> Reveals That Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect. Genetics, 2016, 203, 159-171.	2.9	84
28	Sec66-Dependent Regulation of Yeast Spindle-Pole Body Duplication Through Pom152. Genetics, 2015, 201, 1479-1495.	2.9	11
29	Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. ELife, 2015, 4, .	6.0	64
30	Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis. Molecular Cell, 2015, 60, 435-445.	9.7	102
31	Licensing of Yeast Centrosome Duplication Requires Phosphoregulation of Sfi1. PLoS Genetics, 2014, 10, e1004666.	3.5	37
32	Destination: inner nuclear membrane. Trends in Cell Biology, 2014, 24, 221-229.	7.9	105
33	The SUN protein Mps3 controls Ndc1 distribution and function on the nuclear membrane. Journal of Cell Biology, 2014, 204, 523-539.	5.2	50
34	Breaking down the wall: the nuclear envelope during mitosis. Current Opinion in Cell Biology, 2014, 26, 1-9.	5.4	63
35	Manipulating the Yeast Genome: Deletion, Mutation, and Tagging by PCR. Methods in Molecular Biology, 2014, 1205, 45-78.	0.9	69
36	Nuclear envelope insertion of spindle pole bodies and nuclear pore complexes. Nucleus, 2012, 3, 226-236.	2.2	60

3

SUE L JASPERSEN

#	Article	IF	CITATIONS
37	Genetic Analysis of Mps3 SUN Domain Mutants in Saccharomyces cerevisiae Reveals an Interaction with the SUN-Like Protein Slp1. G3: Genes, Genomes, Genetics, 2012, 2, 1703-1718.	1.8	32
38	Integrity and Function of the <i>Saccharomyces cerevisiae</i> Spindle Pole Body Depends on Connections Between the Membrane Proteins Ndc1, Rtn1, and Yop1. Genetics, 2012, 192, 441-455.	2.9	27
39	Meiotic Pairing as a Polo Match. Developmental Cell, 2011, 21, 805-806.	7.0	4
40	A Cell Cycle Phosphoproteome of the Yeast Centrosome. Science, 2011, 332, 1557-1561.	12.6	88
41	Targeting of the SUN protein Mps3 to the inner nuclear membrane by the histone variant H2A.Z. Journal of Cell Biology, 2011, 193, 489-507.	5.2	51
42	The SUN Protein Mps3 Is Required for Spindle Pole Body Insertion into the Nuclear Membrane and Nuclear Envelope Homeostasis. PLoS Genetics, 2011, 7, e1002365.	3.5	89
43	Changes in the Nuclear Envelope Environment Affect Spindle Pole Body Duplication in Saccharomyces cerevisiae. Genetics, 2010, 186, 867-883.	2.9	40
44	Pushing and Pulling: Microtubules Mediate Meiotic Pairing and Synapsis. Cell, 2009, 139, 861-863.	28.9	9
45	Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. Journal of Cell Biology, 2007, 179, 845-854.	5.2	163
46	The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope. Journal of Cell Biology, 2006, 174, 665-675.	5.2	133
47	TheSaccharomyces cerevisiaeSpindle Pole Body (SPB) Component Nbp1p Is Required for SPB Membrane Insertion and Interacts with the Integral Membrane Proteins Ndc1p and Mps2p. Molecular Biology of the Cell, 2006, 17, 1959-1970.	2.1	42
48	THE BUDDING YEAST SPINDLE POLE BODY: Structure, Duplication, and Function. Annual Review of Cell and Developmental Biology, 2004, 20, 1-28.	9.4	256
49	Cdc28/Cdk1 Regulates Spindle Pole Body Duplication through Phosphorylation of Spc42 and Mps1. Developmental Cell, 2004, 7, 263-274.	7.0	65
50	Mps3p is a novel component of the yeast spindle pole body that interacts with the yeast centrin homologue Cdc31p. Journal of Cell Biology, 2002, 159, 945-956.	5.2	146
51	Cdc14 activates Cdc15 to promote mitotic exit in budding yeast. Current Biology, 2000, 10, 615-618.	3.9	163
52	The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae. Current Biology, 1998, 8, 497-507.	3.9	233