Jordi Merino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1586717/publications.pdf

Version: 2024-02-01

68 papers

5,297 citations

236925 25 h-index 65 g-index

84 all docs

84 docs citations

times ranked

84

8424 citing authors

#	Article	IF	CITATIONS
1	Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut, 2022, 71, 1095-1105.	12.1	98
2	Genetic analysis of dietary intake identifies new loci and functional links with metabolic traits. Nature Human Behaviour, 2022, 6, 155-163.	12.0	22
3	Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. Lancet Infectious Diseases, The, 2022, 22, 43-55.	9.1	573
4	Obesity Partially Mediates the Diabetogenic Effect of Lowering LDL Cholesterol. Diabetes Care, 2022, 45, 232-240.	8.6	10
5	The unique challenges of studying the genetics of diet and nutrition. Nature Medicine, 2022, 28, 221-222.	30.7	7
6	Validity of continuous glucose monitoring for categorizing glycemic responses to diet: implications for use in personalized nutrition. American Journal of Clinical Nutrition, 2022, 115, 1569-1576.	4.7	15
7	Self-reported COVID-19 vaccine hesitancy and uptake among participants from different racial and ethnic groups in the United States and United Kingdom. Nature Communications, 2022, 13, 636.	12.8	118
8	Associations between predicted vitamin D status, vitamin D intake, and risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) severity. American Journal of Clinical Nutrition, 2022, 115, 1123-1133.	4.7	22
9	Polygenic scores, diet quality, and type 2 diabetes risk: An observational study among 35,759 adults from 3 US cohorts. PLoS Medicine, 2022, 19, e1003972.	8.4	17
10	Precision nutrition in diabetes: when population-based dietary advice gets personal. Diabetologia, 2022, 65, 1839-1848.	6.3	17
11	Genetic Architecture of Plasma Alphaâ€Aminoadipic Acid Reveals a Relationship With Highâ€Density Lipoprotein Cholesterol. Journal of the American Heart Association, 2022, 11, .	3.7	6
12	Using genetic variation to disentangle the complex relationship between food intake and health outcomes. PLoS Genetics, 2022, 18, e1010162.	3.5	12
13	Clinical and metabolomic predictors of regression to normoglycemia in a population at intermediate cardiometabolic risk. Cardiovascular Diabetology, 2021, 20, 56.	6.8	10
14	Attributes and predictors of long COVID. Nature Medicine, 2021, 27, 626-631.	30.7	1,613
15	Modest effects of dietary supplements during the COVID-19 pandemic: insights from 445 850 users of the COVID-19 Symptom Study app. BMJ Nutrition, Prevention and Health, 2021, 4, 149-157.	3.7	91
16	Diabetes and blood pressure mediate the effect of obesity on cardiovascular disease. International Journal of Obesity, 2021, 45, 1629-1630.	3.4	1
17	Association of social distancing and face mask use with risk of COVID-19. Nature Communications, 2021, 12, 3737.	12.8	109
18	Adherence to Healthy Diet and Risk and Severity of SARS-CoV-2 Infections: A Community Survey Study Within the COVID Symptom Study Application. Current Developments in Nutrition, 2021, 5, 237.	0.3	0

#	Article	IF	CITATIONS
19	Precision Nutrition and Reliability of Continuous Glucose Monitors: Insights From the PREDICT Study. Current Developments in Nutrition, 2021, 5, 513.	0.3	O
20	Identification of Gene-Diet Interactions Impacting Glycemic Biomarkers in the Multi-Ethnic TOPMed Cohorts. Current Developments in Nutrition, 2021, 5, 952.	0.3	0
21	Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. Lancet Infectious Diseases, The, 2021, 21, 939-949.	9.1	744
22	Sugar-Sweetened Beverage Consumption May Modify Associations Between Genetic Variants in the CHREBP (Carbohydrate Responsive Element Binding Protein) Locus and HDL-C (High-Density Lipoprotein) Tj ETQq e003288.	0,00 rgBT	/Overlock
23	Diet quality and risk and severity of COVID-19: a prospective cohort study. Gut, 2021, 70, 2096-2104.	12.1	130
24	Relationship Between Fatty Acid Binding Protein 4 and Liver Fat in Individuals at Increased Cardiometabolic Risk. Frontiers in Physiology, 2021, 12, 781789.	2.8	5
25	Diet and lifestyle behaviour disruption related to the pandemic was varied and bidirectional among US and UK adults participating in the ZOE COVID Study. Nature Food, 2021, 2, 957-969.	14.0	18
26	Interaction Between Type 2 Diabetes Prevention Strategies and Genetic Determinants of Coronary Artery Disease on Cardiometabolic Risk Factors. Diabetes, 2020, 69, 112-120.	0.6	13
27	LDL Cholesterol and Dysglycemia: an Intriguing Physiological Relationship. Diabetes, 2020, 69, 2058-2060.	0.6	O
28	Human postprandial responses to food and potential for precision nutrition. Nature Medicine, 2020, 26, 964-973.	30.7	418
29	Mendelian Randomization Study of Obesity and Cerebrovascular Disease. Annals of Neurology, 2020, 87, 516-524.	5.3	76
30	Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. Molecular Psychiatry, 2019, 24, 1920-1932.	7.9	44
31	Quality of dietary fat and genetic risk of type 2 diabetes: individual participant data meta-analysis. BMJ: British Medical Journal, 2019, 366, l4292.	2.3	28
32	Genome-wide Association Study of Change in Fasting Glucose over time in 13,807 non-diabetic European Ancestry Individuals. Scientific Reports, 2019, 9, 9439.	3.3	5
33	Mendelian Randomization Analysis of Hemoglobin A1c as a Risk Factor for Coronary Artery Disease. Diabetes Care, 2019, 42, 1202-1208.	8.6	33
34	Clinical Insights into the Genetic Overlap Between Obesity Susceptibility and Food Choices. Obesity, 2019, 27, 878-878.	3.0	0
35	Genome-wide association study of breakfast skipping links clock regulation with food timing. American Journal of Clinical Nutrition, 2019, 110, 473-484.	4.7	34
36	Gene-lifestyle interplay in type 2 diabetes. Current Opinion in Genetics and Development, 2018, 50, 35-40.	3.3	22

#	Article	IF	Citations
37	Joint Data Analysis in Nutritional Epidemiology: Identification of Observational Studies and Minimal Requirements. Journal of Nutrition, 2018, 148, 285-297.	2.9	13
38	Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose. Diabetologia, 2018, 61, 1315-1324.	6.3	93
39	Nutritional Genomics and Direct-to-Consumer Genetic Testing: An Overview. Advances in Nutrition, 2018, 9, 128-135.	6.4	39
40	Precision medicine in diabetes: an opportunity for clinical translation. Annals of the New York Academy of Sciences, 2018, 1411, 140-152.	3.8	32
41	<i>TCF7L2</i> Genetic Variation Augments Incretin Resistance and Influences Response to a Sulfonylurea and Metformin: The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH). Diabetes Care, 2018, 41, 554-561.	8.6	35
42	Effects of Mediterranean Diet on Endothelial Function., 2018,, 363-389.		1
43	Genetically Driven Hyperglycemia Increases Risk of Coronary Artery Disease Separately From Type 2 Diabetes. Diabetes Care, 2017, 40, 687-693.	8.6	45
44	A Decade of Genetic and Metabolomic Contributions to Type 2 Diabetes Risk Prediction. Current Diabetes Reports, 2017, 17, 135.	4.2	19
45	Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-16.	4.0	186
46	Erectile dysfunction and cardiovascular risk factors in a Mediterranean diet cohort. Internal Medicine Journal, 2016, 46, 52-56.	0.8	35
47	Serum palmitoleate acts as a lipokine in subjects at high cardiometabolic risk. Nutrition, Metabolism and Cardiovascular Diseases, 2016, 26, 261-267.	2.6	11
48	Effect of Functional Bread Rich in Potassium, \hat{l}^3 -Aminobutyric Acid and Angiotensin-Converting Enzyme Inhibitors on Blood Pressure, Glucose Metabolism and Endothelial Function. Medicine (United States), 2015, 94, e1807.	1.0	13
49	Physical activity below the minimum international recommendations improves oxidative stress, ADMA levels, resting heart rate and small artery endothelial function. ClĀnica E Investigación En Arteriosclerosis, 2015, 27, 9-16.	0.8	3
50	Is complying with the recommendations of sodium intake beneficial for health in individuals at high cardiovascular risk? Findings from the PREDIMED study. American Journal of Clinical Nutrition, 2015, 101, 440-448.	4.7	25
51	FABP4 plasma concentrations are determined by acquired metabolic derangements rather than genetic determinants. Nutrition, Metabolism and Cardiovascular Diseases, 2015, 25, 875-880.	2.6	9
52	Functional foods and cardiometabolic diseases. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 1272-1300.	2.6	40
53	Subclinical atherosclerosis determinants in morbid obesity. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 963-968.	2.6	13
54	Exclusion of â€~nonRCT evidence' in guidelines for chronic diseases – is it always appropriate? The Look AHEAD study. Current Medical Research and Opinion, 2014, 30, 2009-2019.	1.9	12

#	Article	IF	CITATIONS
55	Low-carbohydrate, high-protein, high-fat diet alters small peripheral artery reactivity in metabolic syndrome patients. ClÃnica E Investigación En Arteriosclerosis, 2014, 26, 58-65.	0.8	5
56	Increasing long-chain n-3PUFA consumption improves small peripheral artery function in patients at intermediate–high cardiovascular risk. Journal of Nutritional Biochemistry, 2014, 25, 642-646.	4.2	19
57	Body Weight Loss by Very-Low-Calorie Diet Program Improves Small Artery Reactive Hyperemia in Severely Obese Patients. Obesity Surgery, 2013, 23, 17-23.	2.1	13
58	Substituting non-HDL cholesterol with LDL as a guide for lipid-lowering therapy increases the number of patients with indication for therapy. Atherosclerosis, 2013, 226, 471-475.	0.8	17
59	Even low physical activity levels improve vascular function in overweight and obese postmenopausal women. Menopause, 2013, 20, 1036-1042.	2.0	13
60	Negative effect of a low-carbohydrate, high-protein, high-fat diet on small peripheral artery reactivity in patients with increased cardiovascular risk. British Journal of Nutrition, 2013, 109, 1241-1247.	2.3	13
61	Low-fat dairy products consumption is associated with lower triglyceride concentrations in a Spanish hypertriglyceridemic cohort. Nutricion Hospitalaria, 2013, 28, 927-33.	0.3	8
62	Lifestyle Changes Lower FABP4 Plasma Concentration in Patients With Cardiovascular Risk. Revista Espanola De Cardiologia (English Ed), 2012, 65, 152-157.	0.6	3
63	Cambios de estilo de vida disminuyen las concentraciones plasmáticas de FABP4 en pacientes con riesgo cardiovascular. Revista Espanola De Cardiologia, 2012, 65, 152-157.	1.2	13
64	Effects of therapeutic lifestyle changes on peripheral artery tonometry in patients with abdominal obesity. Nutrition, Metabolism and Cardiovascular Diseases, 2012, 22, 95-102.	2.6	21
65	Small artery dilation and endothelial markers in cardiovascular risk patients. European Journal of Clinical Investigation, 2012, 42, 34-41.	3.4	10
66	High-density lipoprotein cholesterol and apolipoprotein A1 levels strongly influence the reactivity of small peripheral arteries. Atherosclerosis, 2011, 216, 115-119.	0.8	27
67	Heterozygous Familial Hypercholesterolaemic Patients have Increased Arterial Stiffness, as Determined using the Augmentation Index. Journal of Atherosclerosis and Thrombosis, 2011, 18, 1110-1116.	2.0	18
68	Fatty acid-binding protein 4 is associated with endothelial dysfunction in patients with type 2 diabetes. Atherosclerosis, 2010, 213, 329-331.	0.8	55