Steve J Gamblin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/158626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Structural Basis for 14-3-3:Phosphopeptide Binding Specificity. Cell, 1997, 91, 961-971.	28.9	1,509
2	A Neutralizing Antibody Selected from Plasma Cells That Binds to Group 1 and Group 2 Influenza A Hemagglutinins. Science, 2011, 333, 850-856.	12.6	1,092
3	Role of the polycomb protein EED in the propagation of repressive histone marks. Nature, 2009, 461, 762-767.	27.8	1,018
4	Structure and mechanism of DNA topoisomerase II. Nature, 1996, 379, 225-232.	27.8	813
5	Structure of mammalian AMPK and its regulation by ADP. Nature, 2011, 472, 230-233.	27.8	761
6	The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature, 2006, 443, 45-49.	27.8	735
7	Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science, 2020, 370, 1339-1343.	12.6	735
8	Regulation of p53 activity through lysine methylation. Nature, 2004, 432, 353-360.	27.8	706
9	Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature, 2020, 588, 327-330.	27.8	684
10	Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature, 2006, 444, 378-382.	27.8	594
11	Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature, 2007, 449, 496-500.	27.8	498
12	Influenza Hemagglutinin and Neuraminidase Membrane Glycoproteins. Journal of Biological Chemistry, 2010, 285, 28403-28409.	3.4	491
13	Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet, The, 2021, 397, 2331-2333.	13.7	490
14	Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature, 2008, 453, 1258-1261.	27.8	475
15	SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nature Structural and Molecular Biology, 2020, 27, 763-767.	8.2	471
16	Structural Analysis of 14-3-3 Phosphopeptide Complexes Identifies a Dual Role for the Nuclear Export Signal of 14-3-3 in Ligand Binding. Molecular Cell, 1999, 4, 153-166.	9.7	467
17	Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature, 1995, 376, 188-191.	27.8	444
18	Structural basis of AMPK regulation by small molecule activators. Nature Communications, 2013, 4, 3017.	12.8	432

Steve J Gamblin

#	Article	IF	CITATIONS
19	Structure at 1.65 à of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature, 1997, 389, 758-762.	27.8	420
20	AMP-activated protein kinase: nature's energy sensor. Nature Chemical Biology, 2011, 7, 512-518.	8.0	350
21	Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature, 2003, 421, 652-656.	27.8	346
22	Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nature Communications, 2016, 7, 11316.	12.8	326
23	Structure and Function Analysis of an Antibody Recognizing All Influenza A Subtypes. Cell, 2016, 166, 596-608.	28.9	320
24	Structure of the TPR Domain of p67phox in Complex with Rac·GTP. Molecular Cell, 2000, 6, 899-907.	9.7	295
25	The structure of simian virus 40 refined at 3.1 å resolution. Structure, 1996, 4, 165-182.	3.3	291
26	Receptor binding by an H7N9 influenza virus from humans. Nature, 2013, 499, 496-499.	27.8	284
27	Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17736-17741.	7.1	273
28	Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature, 1997, 388, 693-697.	27.8	264
29	Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21474-21479.	7.1	250
30	Jarid2 Methylation via the PRC2 Complex Regulates H3K27me3 Deposition during Cell Differentiation. Molecular Cell, 2015, 57, 769-783.	9.7	229
31	Crystal Structure and Functional Analysis of the Histone Methyltransferase SET7/9. Cell, 2002, 111, 105-115.	28.9	198
32	Pandemic peak SARS-CoV-2 infection and seroconversion rates in London frontline health-care workers. Lancet, The, 2020, 396, e6-e7.	13.7	196
33	Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature, 2013, 497, 392-396.	27.8	194
34	Specificity and mechanism of the histone methyltransferase Pr-Set7. Genes and Development, 2005, 19, 1444-1454.	5.9	159
35	Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17175-17180.	7.1	159
36	AMP-activated protein kinase: also regulated by ADP?. Trends in Biochemical Sciences, 2011, 36, 470-477.	7.5	153

STEVE J GAMBLIN

#	Article	IF	CITATIONS
37	Specificity Determinants of Recruitment Peptides Bound to Phospho-CDK2/Cyclin Aâ€,‡. Biochemistry, 2002, 41, 15625-15634.	2.5	152
38	ADP Regulates SNF1, the Saccharomyces cerevisiae Homolog of AMP-Activated Protein Kinase. Cell Metabolism, 2011, 14, 707-714.	16.2	146
39	SET domains and histone methylation. Current Opinion in Structural Biology, 2003, 13, 699-705.	5.7	144
40	Structure of a ternary complex of an allosteric lactate dehydrogenase from Bacillus stearothermophilus at 2·5 à resolution. Journal of Molecular Biology, 1992, 223, 317-335.	4.2	137
41	The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	131
42	Antibiotic Recognition by Binuclear Metallo-β-Lactamases Revealed by X-ray Crystallography#. Journal of the American Chemical Society, 2005, 127, 14439-14444.	13.7	123
43	Adaptive immunity and neutralizing antibodies against SARS-CoV-2 variants of concern following vaccination in patients with cancer: the CAPTURE study. Nature Cancer, 2021, 2, 1305-1320.	13.2	123
44	The structure of the GTPase-activating domain from p50rhoGAP. Nature, 1997, 385, 458-461.	27.8	121
45	Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells. Biochemical Journal, 2017, 474, 3059-3073.	3.7	117
46	Influenza hemagglutinin membrane anchor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10112-10117.	7.1	115
47	AZD1222-induced neutralising antibody activity against SARS-CoV-2 Delta VOC. Lancet, The, 2021, 398, 207-209.	13.7	112
48	Activity and specificity of human aldolases. Journal of Molecular Biology, 1991, 219, 573-576.	4.2	111
49	Structure of the Complex of Calmodulin with the Target Sequence of Calmodulin-Dependent Protein Kinase I: Studies of the Kinase Activation Mechanism‡. Biochemistry, 2002, 41, 14669-14679.	2.5	100
50	MgF3â^' as a Transition State Analog of Phosphoryl Transfer. Chemistry and Biology, 2002, 9, 375-381.	6.0	97
51	Structural transitions in influenza haemagglutinin at membrane fusionÂpH. Nature, 2020, 583, 150-153.	27.8	87
52	G-tract RNA removes Polycomb repressive complex 2 from genes. Nature Structural and Molecular Biology, 2019, 26, 899-909.	8.2	86
53	Tissue-specific and interferon-inducible expression of nonfunctional ACE2 through endogenous retroelement co-option. Nature Genetics, 2020, 52, 1294-1302.	21.4	82
54	GTPase-activating proteins and their complexes. Current Opinion in Structural Biology, 1998, 8, 195-201.	5.7	78

Steve J Gamblin

#	Article	IF	CITATIONS
55	The structure of a thermally stable 3-phosphoglycerate kinase and a comparison with its mesophilic equivalent. Proteins: Structure, Function and Bioinformatics, 1993, 15, 283-289.	2.6	73
56	H1N1 2009 Pandemic Influenza Virus: Resistance of the I223R Neuraminidase Mutant Explained by Kinetic and Structural Analysis. PLoS Pathogens, 2012, 8, e1002914.	4.7	72
57	Receptor binding by H10 influenza viruses. Nature, 2014, 511, 475-477.	27.8	69
58	Evolving Catalytic Properties of the MLL Family SET Domain. Structure, 2015, 23, 1921-1933.	3.3	67
59	Functional antibody and T cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study. Nature Cancer, 2021, 2, 1321-1337.	13.2	66
60	Reading, writing and editing methylated lysines on histone tails: new insights from recent structural studies. Current Opinion in Structural Biology, 2010, 20, 730-738.	5.7	61
61	A Human Antibody Recognizing a Conserved Epitope of H5 Hemagglutinin Broadly Neutralizes Highly Pathogenic Avian Influenza H5N1 Viruses. Journal of Virology, 2012, 86, 2978-2989.	3.4	60
62	Omicron neutralising antibodies after third COVID-19 vaccine dose in patients with cancer. Lancet, The, 2022, 399, 905-907.	13.7	60
63	Crystal Structure of the LasA Virulence Factor from Pseudomonas aeruginosa: Substrate Specificity and Mechanism of M23 Metallopeptidases. Journal of Molecular Biology, 2010, 396, 908-923.	4.2	58
64	Crystal structure of the transcription elongation/anti-termination factor NusA from Mycobacterium tuberculosis at 1.7 Ã resolution. Journal of Molecular Biology, 2001, 314, 1087-1095.	4.2	57
65	Structure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2. Nature Communications, 2021, 12, 837.	12.8	55
66	Recent evolution of equine influenza and the origin of canine influenza. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11175-11180.	7.1	54
67	Comment on "The Pentacovalent Phosphorus Intermediate of a Phosphoryl Transfer Reaction". Science, 2003, 301, 1184c-1184.	12.6	50
68	Immune responses following third COVID-19 vaccination are reduced in patients with hematological malignancies compared to patients with solid cancer. Cancer Cell, 2022, 40, 114-116.	16.8	50
69	Evolution of the SARS-CoV-2 spike protein in the human host. Nature Communications, 2022, 13, 1178.	12.8	44
70	Antibody-mediated disruption of the SARS-CoV-2 spike glycoprotein. Nature Communications, 2020, 11, 5337.	12.8	43
71	Reduced antibody cross-reactivity following infection with B.1.1.7 than with parental SARS-CoV-2 strains. ELife, 2021, 10, .	6.0	42
72	Structures of complexes formed by H5 influenza hemagglutinin with a potent broadly neutralizing human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9430-9435.	7.1	38

STEVE J GAMBLIN

#	Article	IF	CITATIONS
73	Changes in the hemagglutinin of H5N1 viruses during human infection – Influence on receptor binding. Virology, 2013, 447, 326-337.	2.4	34
74	Support for shared ancestry of GAPs. Nature, 1998, 392, 448-448.	27.8	32
75	Scalable and robust SARS-CoV-2 testing in an academic center. Nature Biotechnology, 2020, 38, 927-931.	17.5	32
76	A knot or not a knot? SETting the record â€~straight' on proteins. Computational Biology and Chemistry, 2003, 27, 11-15.	2.3	28
77	A Novel I221L Substitution in Neuraminidase Confers High-Level Resistance to Oseltamivir in Influenza B Viruses. Journal of Infectious Diseases, 2014, 210, 1260-1269.	4.0	26
78	Hemagglutinin Structure and Activities. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a038638.	6.2	23
79	Enhanced human receptor binding by H5 haemagglutinins. Virology, 2014, 456-457, 179-187.	2.4	22
80	Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Influenza Virus between Mammals. Cell Host and Microbe, 2020, 28, 602-613.e7.	11.0	20
81	Heterologous humoral immunity to human and zoonotic coronaviruses: Aiming for the achilles heel. Seminars in Immunology, 2021, 55, 101507.	5.6	16
82	The structure of the RbBP5 β-propeller domain reveals a surface with potential nucleic acid binding sites. Nucleic Acids Research, 2018, 46, 3802-3812.	14.5	11
83	Nuclear transport: what a kary-on!. Structure, 1999, 7, R199-R204.	3.3	7
84	Crystallization of a ternary complex of lactate dehydrogenase from Bacillus stearothermophilus. Journal of Molecular Biology, 1988, 204, 1041-1043.	4.2	6
85	Purification, crystallization and preliminary X-ray analysis of the 3-phosphoglycerate kinase from Bacillus stearothermophilus. Journal of Molecular Biology, 1992, 227, 1263-1264.	4.2	6
86	Favorable antibody responses to human coronaviruses in children and adolescents with autoimmune rheumatic diseases. Med, 2021, 2, 1093-1109.e6.	4.4	6
87	6 Structure of SET domain protein lysine methyltransferases. The Enzymes, 2006, 24, 155-178.	1.7	5
88	A key to unlocking chromatin revealed by complex structures. Nature, 2019, 573, 355-356.	27.8	3
89	The effects of cryoprotectant on crystal stability. Journal of Crystal Growth, 1996, 168, 244-247.	1.5	1
90	Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Virus between Mammals. SSRN Electronic Journal, 0, , .	0.4	0