Micheal J Plewa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1584364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging investigator series: microplastic sources, fate, toxicity, detection, and interactions with micropollutants in aquatic ecosystems – a review of reviews. Environmental Sciences: Processes and Impacts, 2022, 24, 172-195.	3.5	22
2	Chemical characterization of dissolved organic matter as disinfection byproduct precursors by UV/fluorescence and ESI FT-ICR MS after smoldering combustion of leaf needles and woody trunks of pine (Pinus jeffreyi). Water Research, 2022, 209, 117962.	11.3	9
3	lodoacetic acid exposure alters the transcriptome in mouse ovarian antral follicles. Journal of Environmental Sciences, 2022, 117, 46-57.	6.1	5
4	Inputs of disinfection by-products to the marine environment from various industrial activities: Comparison to natural production. Water Research, 2022, 217, 118383.	11.3	18
5	Preferential Halogenation of Algal Organic Matter by Iodine over Chlorine and Bromine: Formation of Disinfection Byproducts and Correlation with Toxicity of Disinfected Waters. Environmental Science & Technology, 2022, 56, 1244-1256.	10.0	27
6	Formation of Oleic Acid Chlorohydrins in Vegetables during Postharvest Chlorine Disinfection. Environmental Science & Technology, 2022, 56, 1233-1243.	10.0	6
7	Drivers of Disinfection Byproduct Cytotoxicity in U.S. Drinking Water: Should Other DBPs Be Considered for Regulation?. Environmental Science & Technology, 2022, 56, 392-402.	10.0	77
8	Formation of regulated and unregulated disinfection byproducts during chlorination and chloramination: Roles of dissolved organic matter type, bromide, and iodide. Journal of Environmental Sciences, 2022, 117, 151-160.	6.1	17
9	Relationships between regulated DBPs and emerging DBPs of health concern in U.S. drinking water. Journal of Environmental Sciences, 2022, 117, 161-172.	6.1	10
10	The elimination of cell-associated and non-cell-associated antibiotic resistance genes during membrane filtration processes: A review. Science of the Total Environment, 2022, 833, 155250.	8.0	9
11	Effects of prenatal and lactational exposure to iodoacetic acid on the F1 generation of mice. Biology of Reproduction, 2022, 107, 650-663.	2.7	1
12	Feel the Burn: Disinfection Byproduct Formation and Cytotoxicity during Chlorine Burn Events. Environmental Science & Technology, 2022, 56, 8245-8254.	10.0	10
13	Predicting COVID-19 Infected Individuals in a Defined Population from Wastewater RNA Data. ACS ES&T Water, 2022, 2, 2225-2232.	4.6	5
14	Removal of the precursors of regulated DBPs and TOX from surface waters and wastewater effluents using mixed anion exchange resins. Chemosphere, 2021, 263, 128094.	8.2	13
15	Characterization of Dissolved Organic Matter from Wildfire-induced Microcystis aeruginosa Blooms controlled by Copper Sulfate as Disinfection Byproduct Precursors Using APPI(-) and ESI(-) FT-ICR MS. Water Research, 2021, 189, 116640.	11.3	23
16	Making Swimming Pools Safer: Does Copper–Silver Ionization with Chlorine Lower the Toxicity and Disinfection Byproduct Formation?. Environmental Science & Technology, 2021, 55, 2908-2918.	10.0	36
17	Increased Organohalogen Diversity after Disinfection of Water from a Prescribed Burned Watershed. ACS ES&T Water, 2021, 1, 1274-1282.	4.6	3
18	In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. Science of the Total Environment, 2021, 768, 144750.	8.0	11

#	Article	IF	CITATIONS
19	lodoacetic acid affects estrous cyclicity, ovarian gene expression, and hormone levels in mice. Biology of Reproduction, 2021, 105, 1030-1042.	2.7	21
20	Microwave regeneration of granular activated carbon saturated with PFAS. Water Research, 2021, 198, 117121.	11.3	33
21	Recovery of Critical Metals from Aqueous Sources. ACS Sustainable Chemistry and Engineering, 2021, 9, 11616-11634.	6.7	43
22	Predictive modeling of haloacetonitriles under uniform formation conditions. Water Research, 2021, 201, 117322.	11.3	8
23	Comparison of Estrogenic, Spectroscopic, and Toxicological Analyses of Pilot-Scale Water, Wastewaters, and Processed Wastewaters at Select Military Installations. Environmental Science & Technology, 2021, 55, 13103-13112.	10.0	2
24	Effect of superfine pulverization of powdered activated carbon on adsorption of carbamazepine in natural source waters. Science of the Total Environment, 2021, 793, 148473.	8.0	12
25	Stability of Oxygen Nanobubbles under Freshwater Conditions. Water Research, 2021, 206, 117749.	11.3	22
26	COVID-19 wastewater epidemiology: a model to estimate infected populations. Lancet Planetary Health, The, 2021, 5, e874-e881.	11.4	113
27	Removal of bromide from natural waters: Bromide-selective vs. conventional ion exchange resins. Chemosphere, 2020, 238, 124583.	8.2	58
28	lodoacetic acid inhibits follicle growth and alters expression of genes that regulate apoptosis, the cell cycle, estrogen receptors, and ovarian steroidogenesis in mouse ovarian follicles. Reproductive Toxicology, 2020, 91, 101-108.	2.9	29
29	A comprehensive review of mathematical models developed for the estimation of organic disinfection byproducts. Chemosphere, 2020, 246, 125797.	8.2	14
30	Effect of bromide on NDMA formation during chloramination of model precursor compounds and natural waters. Water Research, 2020, 170, 115323.	11.3	12
31	Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics. Water Research, 2020, 170, 115364.	11.3	215
32	Hurricane resulted in releasing more nitrogenous than carbonaceous disinfection byproduct precursors in coastal watersheds. Science of the Total Environment, 2020, 705, 135785.	8.0	15
33	Effect of prescribed fires on the export of dissolved organic matter, precursors of disinfection by-products, and water treatability. Water Research, 2020, 187, 116385.	11.3	7
34	Estimation of haloacetonitriles formation in water: Uniform formation conditions versus formation potential tests. Science of the Total Environment, 2020, 744, 140987.	8.0	11
35	Total organic halogen (TOX) species formation at different locations in drinking water distribution systems. Environmental Science: Water Research and Technology, 2020, 6, 2542-2552.	2.4	8
36	Toxicity of chlorinated algal-impacted waters: Formation of disinfection byproducts vs. reduction of cyanotoxins. Water Research, 2020, 184, 116145.	11.3	33

#	Article	IF	CITATIONS
37	Source characterization and removal of <i>N</i> -nitrosamine precursors during activated sludge treatment. Environmental Science: Water Research and Technology, 2020, 6, 2432-2443.	2.4	2
38	Composite toxicity assays for enhanced assessment of decentralized potable reuse systems. Environmental Science: Water Research and Technology, 2020, 6, 3306-3315.	2.4	5
39	Linear solvation energy relationship development for adsorption of synthetic organic compounds by carbon nanomaterials: an overview of the last decade. Environmental Science: Water Research and Technology, 2020, 6, 2949-2957.	2.4	4
40	Impact of biological wastewater treatment on the reactivity of N-Nitrosodimethylamine precursors. Water Research, 2020, 186, 116315.	11.3	4
41	Concentration and isotopic composition of mercury in a blackwater river affected by extreme flooding events. Limnology and Oceanography, 2020, 65, 2158-2169.	3.1	16
42	Two years of post-wildfire impacts on dissolved organic matter, nitrogen, and precursors of disinfection by-products in California stream waters. Water Research, 2020, 181, 115891.	11.3	37
43	Comparative Quantitative Toxicology and QSAR Modeling of the Haloacetonitriles: Forcing Agents of Water Disinfection Byproduct Toxicity. Environmental Science & Technology, 2020, 54, 8909-8918.	10.0	72
44	Competitive Adsorption of Polycyclic Aromatic Hydrocarbons to Carbon Nanotubes and the Impact on Bioavailability to Fathead Minnow (<i>Pimephales promelas</i>). Environmental Toxicology and Chemistry, 2020, 39, 1702-1711.	4.3	4
45	Microplastics release precursors of chlorinated and brominated disinfection byproducts in water. Chemosphere, 2020, 251, 126452.	8.2	55
46	Low water treatability efficiency of wildfire-induced dissolved organic matter and disinfection by-product precursors. Water Research, 2020, 184, 116111.	11.3	13
47	High-Resolution Mass Spectrometry Identification of Novel Surfactant-Derived Sulfur-Containing Disinfection Byproducts from Gas Extraction Wastewater. Environmental Science & Technology, 2020, 54, 9374-9386.	10.0	27
48	Activated carbon and organic matter characteristics impact the adsorption of DBP precursors when chlorine is added prior to GAC contactors. Water Research, 2020, 184, 116146.	11.3	24
49	Transformation potential of cannabinoids during their passage through engineered water treatment systems: A perspective. Environment International, 2020, 137, 105586.	10.0	7
50	Mesoporous activated carbon shows superior adsorption affinity for 11-nor-9-carboxy-1"9-tetrahydrocannabinol in water. Npj Clean Water, 2020, 3, .	8.0	5
51	Sorption behavior of real microplastics (MPs): Insights for organic micropollutants adsorption on a large set of well-characterized MPs. Science of the Total Environment, 2020, 720, 137634.	8.0	107
52	Influence of Anaerobic Mesophilic and Thermophilic Digestion on Cytotoxicity of Swine Wastewaters. Environmental Science & Technology, 2020, 54, 3032-3038.	10.0	9
53	To regulate or not to regulate? What to do with more toxic disinfection by-products?. Journal of Environmental Chemical Engineering, 2020, 8, 103939.	6.7	120
54	Adsorption kinetics of synthetic organic contaminants onto superfine powdered activated carbon. Chemosphere, 2020, 253, 126628.	8.2	27

#	Article	IF	CITATIONS
55	Assessing Additivity of Cytotoxicity Associated with Disinfection Byproducts in Potable Reuse and Conventional Drinking Waters. Environmental Science & Technology, 2020, 54, 5729-5736.	10.0	102
56	The interplay between natural organic matter and bromide on bromine substitution. Science of the Total Environment, 2019, 646, 1172-1181.	8.0	49
57	Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels. Water Research, 2019, 163, 114874.	11.3	115
58	Oxidation byproducts from the degradation of dissolved organic matter by advanced oxidation processes $\hat{a} \in A$ critical review. Water Research, 2019, 164, 114929.	11.3	95
59	Chloramination of iodide-containing waters: Formation of iodinated disinfection byproducts and toxicity correlation with total organic halides of treated waters. Science of the Total Environment, 2019, 697, 134142.	8.0	33
60	Formation of iodinated trihalomethanes and noniodinated disinfection byproducts during chloramination of algal organic matter extracted from Microcystis aeruginosa. Water Research, 2019, 162, 115-126.	11.3	30
61	Toxicological Comparison of Water, Wastewaters, and Processed Wastewaters. Environmental Science & Technology, 2019, 53, 9139-9147.	10.0	44
62	Historical and Future Needs for Geospatial Iodide Occurrence in Surface and Groundwaters of the United States of America. Environmental Science and Technology Letters, 2019, 6, 379-388.	8.7	24
63	Adsorption kinetics and aggregation for three classes of carbonaceous adsorbents in the presence of natural organic matter. Chemosphere, 2019, 229, 515-524.	8.2	33
64	Water Disinfection Byproducts Increase Natural Transformation Rates of Environmental DNA in <i>Acinetobacter baylyi</i> ADP1. Environmental Science & amp; Technology, 2019, 53, 6520-6528.	10.0	76
65	Release of Nitrosamines and Nitrosamine Precursors from Scrap Tires. Environmental Science and Technology Letters, 2019, 6, 251-256.	8.7	21
66	Selective removal of bromide and iodide from natural waters using a novel AgCl-SPAC composite at environmentally relevant conditions. Water Research, 2019, 156, 168-178.	11.3	34
67	Control wildfire-induced Microcystis aeruginosa blooms by copper sulfate: Trade-offs between reducing algal organic matter and promoting disinfection byproduct formation. Water Research, 2019, 158, 227-236.	11.3	52
68	Global Transcriptional Analysis of Nontransformed Human Intestinal Epithelial Cells (FHs 74 Int) after Exposure to Selected Drinking Water Disinfection By-Products. Environmental Health Perspectives, 2019, 127, 117006.	6.0	21
69	Efficient PFAS Removal by Amine-Functionalized Sorbents: Critical Review of the Current Literature. Environmental Science and Technology Letters, 2019, 6, 688-695.	8.7	160
70	The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere, 2019, 220, 866-882.	8.2	287
71	Predictive models for adsorption of organic compounds by Graphene nanosheets: comparison with carbon nanotubes. Science of the Total Environment, 2019, 654, 28-34.	8.0	19
72	Removal of wastewater and polymer derived N-nitrosodimethylamine precursors with integrated use of chlorine and chlorine dioxide. Chemosphere, 2019, 216, 224-233.	8.2	7

#	Article	IF	CITATIONS
73	Predominant <i>N</i> -Haloacetamide and Haloacetonitrile Formation in Drinking Water via the Aldehyde Reaction Pathway. Environmental Science & Technology, 2019, 53, 850-859.	10.0	34
74	Genotoxicity Assessment of Drinking Water Disinfection Byproducts by DNA Damage and Repair Pathway Profiling Analysis. Environmental Science & Technology, 2018, 52, 6565-6575.	10.0	57
75	Spectroscopic Indicators for Cytotoxicity of Chlorinated and Ozonated Effluents from Wastewater Stabilization Ponds and Activated Sludge. Environmental Science & Technology, 2018, 52, 3167-3174.	10.0	26
76	The role of chloramine species in NDMA formation. Water Research, 2018, 140, 100-109.	11.3	45
77	Deactivation of wastewater-derived N-nitrosodimethylamine precursors with chlorine dioxide oxidation and the effect of pH. Science of the Total Environment, 2018, 635, 1383-1391.	8.0	10
78	Rapid Removal of Poly- and Perfluorinated Alkyl Substances by Poly(ethylenimine)-Functionalized Cellulose Microcrystals at Environmentally Relevant Conditions. Environmental Science and Technology Letters, 2018, 5, 764-769.	8.7	99
79	Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae. Water Research, 2018, 142, 313-324.	11.3	101
80	Chlorotyrosines versus Volatile Byproducts from Chlorine Disinfection during Washing of Spinach and Lettuce. Environmental Science & amp; Technology, 2018, 52, 9361-9369.	10.0	22
81	The impact of disinfection Ct values on cytotoxicity of agricultural wastewaters: Ozonation vs. chlorination. Water Research, 2018, 144, 482-490.	11.3	32
82	Thiol Reactivity Analyses To Predict Mammalian Cell Cytotoxicity of Water Samples. Environmental Science & Technology, 2018, 52, 8822-8829.	10.0	24
83	Removal of bromide from surface waters using silver impregnated activated carbon. Water Research, 2017, 113, 223-230.	11.3	36
84	Effect of nano-ZnO on biogas generation from simulated landfills. Waste Management, 2017, 63, 18-26.	7.4	18
85	Comparative mammalian cell cytotoxicity of wastewater with elevated bromide and iodide after chlorination, chloramination, or ozonation. Journal of Environmental Sciences, 2017, 58, 296-301.	6.1	27
86	TIC-Tox: A preliminary discussion on identifying the forcing agents of DBP-mediated toxicity of disinfected water. Journal of Environmental Sciences, 2017, 58, 208-216.	6.1	184
87	Chloramination of wastewater effluent: Toxicity and formation of disinfection byproducts. Journal of Environmental Sciences, 2017, 58, 135-145.	6.1	67
88	Investigation of nuclear enzyme topoisomerase as a putative molecular target of monohaloacetonitrile disinfection by-products. Journal of Environmental Sciences, 2017, 58, 231-238.	6.1	8
89	CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review. Journal of Environmental Sciences, 2017, 58, 64-76.	6.1	528
90	Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes. Environmental Science & Technology, 2017, 51, 7101-7110.	10.0	92

#	Article	IF	CITATIONS
91	Monohalogenated acetamide-induced cellular stress and genotoxicity are related to electrophilic softness and thiol/thiolate reactivity. Journal of Environmental Sciences, 2017, 58, 224-230.	6.1	28
92	Removal of both N-nitrosodimethylamine and trihalomethanes precursors in a single treatment using ion exchange resins. Water Research, 2017, 124, 20-28.	11.3	29
93	Impact of combining chlorine dioxide and chlorine on DBP formation in simulated indoor swimming pools. Journal of Environmental Sciences, 2017, 58, 155-162.	6.1	28
94	Disinfection By-Products in Drinking Water, Recycled Water and Wastewater: Formation, Detection, Toxicity and Health Effects: Preface. Journal of Environmental Sciences, 2017, 58, 1.	6.1	18
95	Adsorption of organic contaminants by graphene nanosheets: A review. Water Research, 2017, 126, 385-398.	11.3	354
96	The control of disinfection byproducts and their precursors in biologically active filtration processes. Water Research, 2017, 124, 630-653.	11.3	108
97	Extreme flooding mobilized dissolved organic matter from coastal forested wetlands. Biogeochemistry, 2017, 136, 293-309.	3.5	43
98	Identification and Comparative Mammalian Cell Cytotoxicity of New Iodo-Phenolic Disinfection Byproducts in Chloraminated Oil and Gas Wastewaters. Environmental Science and Technology Letters, 2017, 4, 475-480.	8.7	83
99	Toxicity of Wastewater with Elevated Bromide and Iodide after Chlorination, Chloramination, or Ozonation Disinfection. Environmental Science & amp; Technology, 2017, 51, 9297-9304.	10.0	73
100	Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to <i>Pimphales promelas</i> : Influence of Adsorbate Molecular Size and Configuration. Environmental Science & Technology, 2017, 51, 9288-9296.	10.0	14
101	Dynamic Changes of Disinfection Byproduct Precursors following Exposures of <i>Microcystis aeruginosa</i> to Wildfire Ash Solutions. Environmental Science & Technology, 2017, 51, 8272-8282.	10.0	22
102	Removal of Selected C―and Nâ€ÐBP Precursors in Biologically Active Filters. Journal - American Water Works Association, 2017, 109, E73.	0.3	13
103	Relative Importance of Different Water Categories as Sources of <i>N</i> -Nitrosamine Precursors. Environmental Science & Technology, 2016, 50, 13239-13248.	10.0	65
104	Temporal variations of disinfection byproduct precursors in wildfire detritus. Water Research, 2016, 99, 66-73.	11.3	27
105	Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro. Reproductive Toxicology, 2016, 62, 71-76.	2.9	34
106	N-Nitrosamines and halogenated disinfection byproducts in U.S. Full Advanced Treatment trains for potable reuse. Water Research, 2016, 101, 176-186.	11.3	173
107	Linear solvation energy relationships (LSER) for adsorption of organic compounds by carbon nanotubes. Water Research, 2016, 98, 28-38.	11.3	51
108	Superfine powdered activated carbon (S-PAC) coatings on microfiltration membranes: Effects of milling time on contaminant removal and flux. Water Research, 2016, 100, 429-438.	11.3	35

#	Article	IF	CITATIONS
109	Energy of the Lowest Unoccupied Molecular Orbital, Thiol Reactivity, and Toxicity of Three Monobrominated Water Disinfection Byproducts. Environmental Science & Technology, 2016, 50, 3215-3221.	10.0	42
110	Comparative Mammalian Cell Cytotoxicity of Wastewaters for Agricultural Reuse after Ozonation. Environmental Science & Technology, 2016, 50, 11752-11759.	10.0	35
111	The control of N-nitrosodimethylamine, Halonitromethane, and Trihalomethane precursors by Nanofiltration. Water Research, 2016, 105, 274-281.	11.3	35
112	Granular Activated Carbon Treatment May Result in Higher Predicted Genotoxicity in the Presence of Bromide. Environmental Science & amp; Technology, 2016, 50, 9583-9591.	10.0	83
113	Evaluation of Seasonal Performance of Conventional and Phosphateâ€Amended Biofilters. Journal - American Water Works Association, 2016, 108, E523.	0.3	14
114	Removal of Disinfection By-Product Precursors Using Hybrid Coagulation-Ceramic Membrane Systems. Journal - American Water Works Association, 2016, 108, E513-E522.	0.3	3
115	Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions. Science of the Total Environment, 2016, 565, 811-817.	8.0	84
116	Effect of bead milling on chemical and physical characteristics of activated carbons pulverized to superfine sizes. Water Research, 2016, 89, 161-170.	11.3	52
117	Removal of N -nitrosodimethylamine precursors with powdered activated carbon adsorption. Water Research, 2016, 88, 711-718.	11.3	48
118	Acetonitrile and <i>N</i> -Chloroacetamide Formation from the Reaction of Acetaldehyde and Monochloramine. Environmental Science & Technology, 2015, 49, 9954-9963.	10.0	29
119	Optimization of Coagulation Pretreatment Conditions in a Ceramic Membrane System. Journal - American Water Works Association, 2015, 107, E693.	0.3	7
120	Occurrence and Comparative Toxicity of Haloacetaldehyde Disinfection Byproducts in Drinking Water. Environmental Science & Technology, 2015, 49, 13749-13759.	10.0	167
121	<i>N</i> -Nitrosodimethylamine (NDMA) Precursors Leach from Nanofiltration Membranes. Environmental Science and Technology Letters, 2015, 2, 66-69.	8.7	15
122	Seasonal and temporal patterns of NDMA formation potentials in surface waters. Water Research, 2015, 69, 162-172.	11.3	49
123	Wildfire Altering Terrestrial Precursors of Disinfection Byproducts in Forest Detritus. Environmental Science & Technology, 2015, 49, 5921-5929.	10.0	90
124	Disinfection by-product formation during seawater desalination: A review. Water Research, 2015, 81, 343-355.	11.3	164
125	Mechanisms and modeling of halogenated aliphatic contaminant adsorption by carbon nanotubes. Journal of Hazardous Materials, 2015, 295, 138-144.	12.4	42
126	Adsorption of halogenated aliphatic contaminants by graphene nanomaterials. Water Research, 2015, 79, 57-67.	11.3	87

#	Article	IF	CITATIONS
127	Trihalomethane hydrolysis in drinking water at elevated temperatures. Water Research, 2015, 78, 18-27.	11.3	40
128	Leaching of DOC, DN, and inorganic constituents from scrap tires. Chemosphere, 2015, 139, 617-623.	8.2	70
129	Charting a New Path To Resolve the Adverse Health Effects of DBPs. ACS Symposium Series, 2015, , 3-23.	0.5	39
130	<i>In Vitro</i> Cytotoxicity and Adaptive Stress Responses to Selected Haloacetic Acid and Halobenzoquinone Water Disinfection Byproducts. Chemical Research in Toxicology, 2015, 28, 2059-2068.	3.3	64
131	Assessing trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA) formation potentials in drinking water treatment plants using fluorescence spectroscopy and parallel factor analysis. Chemosphere, 2015, 121, 84-91.	8.2	100
132	Use of theoretical waste inventories in planning and monitoring of hazardous waste management systems. Waste Management and Research, 2014, 32, 763-771.	3.9	3
133	The effect of pre-oxidation on NDMA formation and the influence of pH. Water Research, 2014, 66, 169-179.	11.3	69
134	Toxic Impact of Bromide and Iodide on Drinking Water Disinfected with Chlorine or Chloramines. Environmental Science & Technology, 2014, 48, 12362-12369.	10.0	215
135	Toxicity of Drinking Water Disinfection Byproducts: Cell Cycle Alterations Induced by the Monohaloacetonitriles. Environmental Science & Technology, 2014, 48, 11662-11669.	10.0	59
136	Boiling of Simulated Tap Water: Effect on Polar Brominated Disinfection Byproducts, Halogen Speciation, and Cytotoxicity. Environmental Science & Technology, 2014, 48, 149-156.	10.0	108
137	Disinfection byproducts in swimming pool: Occurrences, implications and future needs. Water Research, 2014, 53, 68-109.	11.3	175
138	Chloroacetonitrile and <i>N</i> ,2-Dichloroacetamide Formation from the Reaction of Chloroacetaldehyde and Monochloramine in Water. Environmental Science & Technology, 2013, 47, 12382-12390.	10.0	51
139	Human Cell Toxicogenomic Analysis Linking Reactive Oxygen Species to the Toxicity of Monohaloacetic Acid Drinking Water Disinfection Byproducts. Environmental Science & Technology, 2013, 47, 12514-12523.	10.0	108
140	Development of a 3D QSPR model for adsorption of aromatic compounds by carbon nanotubes: comparison of multiple linear regression, artificial neural network and support vector machine. RSC Advances, 2013, 3, 23924.	3.6	27
141	Chemical and Biological Characterization of Wastewater Generated from Hydrothermal Liquefaction of <i>Spirulina</i> . Environmental Science & Technology, 2013, 47, 2131-2138.	10.0	149
142	Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection byâ€products. Environmental and Molecular Mutagenesis, 2013, 54, 629-637.	2.2	48
143	Calculating the greenhouse gas emissions of water utilities. Journal - American Water Works Association, 2013, 105, E363.	0.3	7
144	MIEX® treatment of an effluentâ€impacted stream. Journal - American Water Works Association, 2013, 105, E195.	0.3	9

#	Article	IF	CITATIONS
145	Source water and microfiltration plant manganese control study. Journal - American Water Works Association, 2013, 105, E480.	0.3	0
146	The effects of selected preoxidation strategies on I-THM formation and speciation. Water Research, 2012, 46, 5491-5498.	11.3	37
147	The correlation between structural characteristics of activated carbons and their adsorption of organic solutes from aqueous solutions. Adsorption, 2012, 18, 229-238.	3.0	6
148	Occurrence and Toxicity of Disinfection Byproducts in European Drinking Waters in Relation with the HIWATE Epidemiology Study. Environmental Science & Technology, 2012, 46, 12120-12128.	10.0	143
149	The impact of bromide/iodide concentration and ratio on iodinated trihalomethane formation and speciation. Water Research, 2012, 46, 11-20.	11.3	96
150	Comparative genotoxicity of nitrosamine drinking water disinfection byproducts in Salmonella and mammalian cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 741, 109-115.	1.7	62
151	Differential Toxicity of Drinking Water Disinfected with Combinations of Ultraviolet Radiation and Chlorine. Environmental Science & amp; Technology, 2012, 46, 7811-7817.	10.0	68
152	Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging. Environmental Science & Technology, 2011, 45, 6845-6854.	10.0	242
153	Biological Mechanism for the Toxicity of Haloacetic Acid Drinking Water Disinfection Byproducts. Environmental Science & Technology, 2011, 45, 5791-5797.	10.0	122
154	I-THM Formation and Speciation: Preformed Monochloramine versus Prechlorination Followed by Ammonia Addition. Environmental Science & amp; Technology, 2011, 45, 10429-10437.	10.0	69
155	Hazardous waste management in Turkey: current legislative requirements and future challenges. Desalination and Water Treatment, 2011, 26, 152-159.	1.0	2
156	Formation of disinfection by-products in indoor swimming pool water: The contribution from filling water natural organic matter and swimmer body fluids. Water Research, 2011, 45, 926-932.	11.3	138
157	Comparative Mammalian Cell Cytotoxicity of Water Concentrates from Disinfected Recreational Pools. Environmental Science & amp; Technology, 2011, 45, 4159-4165.	10.0	74
158	Human cell toxicogenomic analysis of bromoacetic acid: A regulated drinking water disinfection byâ€product. Environmental and Molecular Mutagenesis, 2010, 51, 205-214.	2.2	31
159	Detecting Departure From Additivity Along aÂFixed-Ratio Mixture Ray With a Piecewise Model for Dose and Interaction Thresholds. Journal of Agricultural, Biological, and Environmental Statistics, 2010, 15, 510-522.	1.4	35
160	DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environmental and Molecular Mutagenesis, 2010, 51, 304-314.	2.2	156
161	Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection byâ€products. Environmental and Molecular Mutagenesis, 2010, 51, 871-878.	2.2	266
162	Genotoxicity of Water Concentrates from Recreational Pools after Various Disinfection Methods. Environmental Science & Technology, 2010, 44, 3527-3532.	10.0	111

#	Article	IF	CITATIONS
163	Comparative Human Cell Toxicogenomic Analysis of Monohaloacetic Acid Drinking Water Disinfection Byproducts. Environmental Science & Technology, 2010, 44, 7206-7212.	10.0	80
164	Comparison of Byproduct Formation in Waters Treated with Chlorine and Iodine: Relevance to Point-of-Use Treatment. Environmental Science & amp; Technology, 2010, 44, 8446-8452.	10.0	111
165	Exploring Amino Acid Side Chain Decomposition Using Enzymatic Digestion and HPLC-MS: Combined Lysine Transformations in Chlorinated Waters. Analytical Chemistry, 2009, 81, 7650-7659.	6.5	13
166	Chapter 3. Microplate-Based Comet Assay. Issues in Toxicology, 2009, , 79-97.	0.1	23
167	Occurrence, Synthesis, and Mammalian Cell Cytotoxicity and Genotoxicity of Haloacetamides: An Emerging Class of Nitrogenous Drinking Water Disinfection Byproducts. Environmental Science & Technology, 2008, 42, 955-961.	10.0	452
168	Occurrence and Mammalian Cell Toxicity of Iodinated Disinfection Byproducts in Drinking Water. Environmental Science & Technology, 2008, 42, 8330-8338.	10.0	830
169	Comparative Mammalian Cell Toxicity of N-DBPs and C-DBPs. ACS Symposium Series, 2008, , 36-50.	0.5	164
170	Recent Advances in Disinfection By-Product Formation, Occurrence, Control, Health Effects, and Regulations. ACS Symposium Series, 2008, , 2-19.	0.5	29
171	HAA Formation and Speciation during Chloramination. ACS Symposium Series, 2008, , 124-140.	0.5	2
172	Natural Dissolved Organic Matter Removal and Subsequent Disinfection By-Product Formation: A Comparison of Ion Exchange and Activated Carbon. ACS Symposium Series, 2008, , 242-256.	0.5	1
173	Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutation Research - Reviews in Mutation Research, 2007, 636, 178-242.	5.5	2,531
174	Testing for additivity in chemical mixtures using a fixed-ratio ray design and statistical equivalence testing methods. Journal of Agricultural, Biological, and Environmental Statistics, 2007, 12, 514-533.	1.4	33
175	Haloacetonitriles vs. Regulated Haloacetic Acids:Â Are Nitrogen-Containing DBPs More Toxic?. Environmental Science & Technology, 2007, 41, 645-651.	10.0	597
176	HAA formation during chloramination—significance of monochloramine's direct reaction with DOM. Journal - American Water Works Association, 2007, 99, 57-69.	0.3	47
177	Modulation of the Cytotoxicity and Genotoxicity of the Drinking Water Disinfection Byproduct lodoacetic Acid by Suppressors of Oxidative Stress. Environmental Science & Technology, 2006, 40, 1878-1883.	10.0	104
178	Exploring Molecular Sieve Capabilities of Activated Carbon Fibers to Reduce the Impact of NOM Preloading on Trichloroethylene Adsorption. Environmental Science & Technology, 2006, 40, 1321-1327.	10.0	24
179	Trichloroethylene Adsorption by Fibrous and Granular Activated Carbons:Â Aqueous Phase, Gas Phase, and Water Vapor Adsorption Studiesâ€. Environmental Science & Technology, 2004, 38, 5834-5841.	10.0	103
180	Halonitromethane Drinking Water Disinfection Byproducts:Â Chemical Characterization and Mammalian Cell Cytotoxicity and Genotoxicity. Environmental Science & Technology, 2004, 38, 62-68.	10.0	446

#	Article	IF	CITATIONS
181	Chemical and Biological Characterization of Newly Discovered Iodoacid Drinking Water Disinfection Byproducts. Environmental Science & amp; Technology, 2004, 38, 4713-4722.	10.0	433
182	The comet assay: Genotoxic damage or nuclear fragmentation?. Environmental and Molecular Mutagenesis, 2003, 42, 61-67.	2.2	90
183	Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products. Environmental and Molecular Mutagenesis, 2002, 40, 134-142.	2.2	352
184	Analysis of the cytotoxicity and mutagenicity of drinking water disinfection by-products inSalmonella typhimurium. Teratogenesis, Carcinogenesis, and Mutagenesis, 2002, 22, 113-128.	0.8	93
185	Isolation of dissolved organic matter (dom) from surface waters using reverse osmosis and its impact on the reactivity of dom to formation and speciation of disinfection by-products. Water Research, 2001, 35, 2225-2234.	11.3	73
186	Differentiation of Total Organic Brominated and Chlorinated Compounds in Total Organic Halide Measurement: A New Approach with an Ion-Chromatographic Technique. ACS Symposium Series, 2000, , 330-342.	0.5	20
187	The Use of Granular Activated Carbon Adsorption for Natural Organic Matter Control and Its Reactivity to Disinfection By-Product Formation. ACS Symposium Series, 2000, , 190-205.	0.5	1
188	Role of Granular Activated Carbon Surface Chemistry on the Adsorption of Organic Compounds. 1. Priority Pollutants. Environmental Science & Technology, 1999, 33, 3217-3224.	10.0	226
189	Analysis of mutagens with single cell gel electrophoresis, flow cytometry, and forward mutation assays in an isolated clone of Chinese hamster ovary cells. , 1998, 32, 360-368.		78