Joel Chopineau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1584291/publications.pdf

Version: 2024-02-01

74 papers 2,108 citations

257450 24 h-index 243625 44 g-index

75 all docs

75 docs citations

75 times ranked

2562 citing authors

#	Article	IF	CITATIONS
1	Rapid communication: insights into the role of extracellular vesicles during Auger radioimmunotherapy. International Journal of Radiation Biology, 2023, 99, 109-118.	1.8	6
2	Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coordination Chemistry Reviews, 2022, 461, 214497.	18.8	21
3	Vegetable oil-based hybrid microparticles as a green and biocompatible system for subcutaneous drug delivery. International Journal of Pharmaceutics, 2021, 592, 120070.	5.2	4
4	Nanotechnologies for Intracellular Protein Delivery: Recent Progress in Inorganic and Organic Nanocarriers. Advanced Therapeutics, 2021, 4, 2100009.	3.2	15
5	A Novel Approach to the Facile Growth and Organization of Photothermal Prussian Blue Nanocrystals on Different Surfaces. Nanomaterials, 2021, 11, 1749.	4.1	2
6	Interest of extracellular vesicles in regards to lipid nanoparticle based systems for intracellular protein delivery. Advanced Drug Delivery Reviews, 2021, 176, 113837.	13.7	22
7	A rational study of the influence of Mn2+-insertion in Prussian blue nanoparticles on their photothermal properties. Journal of Materials Chemistry B, 2021, 9, 9670-9683.	5.8	6
8	Development of extracellular vesicle-based medicinal products: A position paper of the group "Extracellular Vesicle translatiOn to clinicaL perspectiVEs – EVOLVE France― Advanced Drug Delivery Reviews, 2021, 179, 114001.	13.7	42
9	Post-production modifications of murine mesenchymal stem cell (mMSC) derived extracellular vesicles (EVs) and impact on their cellular interaction. Biomaterials, 2020, 231, 119675.	11.4	59
10	Critical parameters in surface plasmon resonance biosensor development: The interaction between estrogen receptor and estrogen response element as model. Biochimie, 2020, 171-172, 12-20.	2.6	0
11	Synergic effect of doxorubicin release and two-photon irradiation of Mn ²⁺ -doped Prussian blue nanoparticles on cancer therapy. RSC Advances, 2020, 10, 2646-2649.	3.6	10
12	Tunable vegetable oil/silica hybrid microparticles for poorly water-soluble drug delivery. International Journal of Pharmaceutics, 2019, 567, 118478.	5.2	8
13	Characterization and Whole Genome Sequencing of AR23, a Highly Toxic Bacillus thuringiensis Strain Isolated from Lebanese Soil. Current Microbiology, 2019, 76, 1503-1511.	2.2	9
14	A simple approach for controlled deposition of Prussian blue analogue nanoparticles on a functionalised plasmonic gold surface. New Journal of Chemistry, 2019, 43, 3660-3664.	2.8	5
15	Physico-chemical properties and surface characterization of renewable hybrid nanofilms interacting with model proteins. European Polymer Journal, 2019, 111, 161-169.	5.4	3
16	Biosafety of Mesoporous Silica Nanoparticles. Biomimetics, 2018, 3, 22.	3.3	16
17	Translocation and calmodulin-activation of the adenylate cyclase toxin (CyaA) of <i>Bordetella pertussis </i> . Pathogens and Disease, 2018, 76, .	2.0	11
18	Experimental separation steps influence the protein content of corona around mesoporous silica nanoparticles. Nanoscale, 2017, 9, 5769-5772.	5.6	32

#	Article	IF	Citations
19	Vegetable oil hybrid films cross-linked at the air–water interface: formation kinetics and physical characterization. Soft Matter, 2017, 13, 4569-4579.	2.7	7
20	Cross-Linked Castor Oil-Based Hybrid Microparticles as Drug Delivery Systems. ACS Sustainable Chemistry and Engineering, 2017, 5, 4311-4319.	6.7	22
21	Synthesis and characterization of tethered lipid assemblies for membrane protein reconstitution (Review). Biointerphases, 2017, 12, 04E301.	1.6	14
22	Biocompatibility assessment of functionalized magnetic mesoporous silica nanoparticles in human HepaRG cells. Nanotoxicology, 2017, 11, 871-890.	3.0	23
23	²⁰¹ Tl-labeled Prussian blue and Au@Prussian blue nanoprobes for SPEC-CT imaging: influence of the size, shape and coating on the biodistribution. Inorganic Chemistry Frontiers, 2017, 4, 1737-1741.	6.0	12
24	The timeline of corona formation around silica nanocarriers highlights the role of the protein interactome. Nanoscale, 2017, 9, 1840-1851.	5.6	56
25	Biological Fate of Fe3O4 Core-Shell Mesoporous Silica Nanoparticles Depending on Particle Surface Chemistry. Nanomaterials, 2017, 7, 162.	4.1	23
26	The species origin of the serum in the culture medium influences the in vitro toxicity of silica nanoparticles to HepG2 cells. PLoS ONE, 2017, 12, e0182906.	2.5	35
27	Estrogen receptor preparation effects on the receptor–DNA interaction by surface plasmon resonance. Analytical and Bioanalytical Chemistry, 2016, 408, 8257-8262.	3.7	4
28	Synthesis, decoration, and cellular effects of magnetic mesoporous silica nanoparticles. RSC Advances, 2016, 6, 57275-57283.	3.6	28
29	The relevance of membrane models to understand nanoparticles–cell membrane interactions. Nanoscale, 2016, 8, 4780-4798.	5.6	101
30	Deciphering Protein Membrane Interactions Involved in the Translocation Process of a Bacterial Toxin, the Adenylate Cyclase (CyaA) Toxin from B.ÂPertussis. Biophysical Journal, 2015, 108, 497a.	0.5	0
31	Inspired and stabilized by nature: ribosomal synthesis of the human voltage gated ion channel (VDAC) into 2D-protein-tethered lipid interfaces. Biomaterials Science, 2015, 3, 1406-1413.	5.4	28
32	21. Voltage- and calcium-dependent translocation of Bordetella pertussis adenylate cyclase (CyaA) toxin across a tethered lipid bilayer. Toxicon, 2014, 91, 173.	1.6	0
33	Biosensing Properties of Au Loaded Mesoporous Silica Nanospheres Coated with Lipid Bilayers. Biophysical Journal, 2014, 106, 415a.	0.5	0
34	Isolation and characterization of a new Bacillus thuringiensis strain Lip harboring a new cry1Aa gene highly toxic to Ephestia kuehniella (Lepidoptera: Pyralidae) larvae. Archives of Microbiology, 2014, 196, 435-444.	2.2	18
35	Impact of biochemical design on estrogen receptor/estrogen response element interaction by surface plasmon resonance technology. Archives of Biochemistry and Biophysics, 2014, 541, 61-66.	3.0	5
36	Voltage- and Calcium-Dependent Toxin Translocation Across a Tethered Lipid Bilayer. Biophysical Journal, 2014, 106, 18a.	0.5	0

#	Article	IF	Citations
37	<i>Bordetella pertussis</i> adenylate cyclase toxin translocation across a tethered lipid bilayer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20473-20478.	7.1	45
38	Characterization of a Membrane-active Peptide from the Bordetella pertussis CyaA Toxin. Journal of Biological Chemistry, 2013, 288, 32585-32598.	3.4	48
39	Glycogen synthase kinase 3-mediated voltage-dependent anion channel phosphorylation controls outer mitochondrial membrane permeability during lipid accumulation. Hepatology, 2013, 57, 93-102.	7.3	55
40	Kinetics of Interaction between ADP-ribosylation Factor-1 (Arf1) and the Sec7 Domain of Arno Guanine Nucleotide Exchange Factor, Modulation by Allosteric Factors, and the Uncompetitive Inhibitor Brefeldin A. Journal of Biological Chemistry, 2013, 288, 4659-4672.	3.4	10
41	ANT-VDAC1 interaction is direct and depends on ANT isoform conformation in vitro. Biochemical and Biophysical Research Communications, 2012, 429, 12-17.	2.1	27
42	One Step Synthesis of Gold‣oaded Radial Mesoporous Silica Nanospheres and Supported Lipid Bilayer Functionalization: Towards Bioâ€Multifunctional Sensors. Small, 2012, 8, 3674-3682.	10.0	19
43	The Adenine Nucleotide Translocase 2, a Mitochondrial Target for Anticancer Biotherapy. Current Drug Targets, 2011, 12, 894-901.	2.1	20
44	A Tethered Bilayer Assembled on Top of Immobilized Calmodulin to Mimic Cellular Compartmentalization. PLoS ONE, 2011, 6, e19101.	2.5	11
45	Exploring the Membrane Mechanism of the Bioactive Peptaibol Ampullosporin A Using Lipid Monolayers and Supported Biomimetic Membranes. Journal of Biophysics, 2010, 2010, 1-12.	0.8	10
46	Determination of estrogen presence in water by SPR using estrogen receptor dimerization. Analytical and Bioanalytical Chemistry, 2008, 390, 873-883.	3.7	43
47	Voltage-Dependent Anion Channel Transports Calcium Ions through Biomimetic Membranes. Langmuir, 2007, 23, 3898-3905.	3.5	52
48	Surface Response Methodology for the Study of Supported Membrane Formation. Journal of Physical Chemistry B, 2007, 111, 7567-7576.	2.6	24
49	SPR-based biosensors: a tool for biodetection of hormonal compounds. Analytical and Bioanalytical Chemistry, 2007, 387, 1215-1223.	3.7	52
50	Biomimetic tethered lipid membranes designed for membrane-protein interaction studies. European Biophysics Journal, 2007, 36, 955-965.	2.2	111
51	Differential Mechanisms for Calcium-Dependent Protein/Membrane Association as Evidenced from SPR-Binding Studies on Supported Biomimetic Membranesâ€. Biochemistry, 2003, 42, 15273-15283.	2.5	57
52	Phase Behavior of Mixed Aqueous Dispersions of Dipalmitoylphosphatidylcholine and Dodecyl Glycosides:Â A Differential Scanning Calorimetry and X-ray Diffraction Investigation. Langmuir, 2002, 18, 325-335.	3.5	26
53	Ca2+-Myristoyl Switch and Membrane Binding of Chemically Acylated Neurocalcins. Biochemistry, 2001, 40, 8152-8160.	2.5	26
54	Study of hydrophobic interactions between acylated proteins and phospholipid bilayers using BIACORE. Journal of Molecular Recognition, 2001, 14, 72-78.	2.1	8

#	Article	IF	CITATIONS
55	Reversed Micelles as Microreactors: N-terminal Acylation of RNase A and its Characterization. , 2000, , 160-173.		1
56	Monoacylation of ribonuclease A enables its transport across an in vitro model of the blood–brain barrier. Journal of Controlled Release, 1998, 56, 231-237.	9.9	31
57	Self-evolving microstructured systems upon enzymatic catalysis. Biochimie, 1998, 80, 421-435.	2.6	13
58	Phase Behavior of Mixed Aqueous Dispersions of DPPC and Dodecyl Glycosides:Â Aggregation States Implicated in the Micelle-to-Vesicle Transition. Langmuir, 1998, 14, 3767-3777.	3.5	25
59	Enzyme-Mediated Formation of Vesicles from DPPCâ^'Dodecyl Maltoside Mixed Micelles. Journal of the American Chemical Society, 1998, 120, 10588-10595.	13.7	10
60	Physicochemical characterization and in vitro interaction with brain capillary endothelial cells of artificially monoacylated ribonucleases A. International Journal of Peptide Research and Therapeutics, 1997, 4, 313-321.	0.1	2
61	Crystallization of monoacylated proteins: influence of acyl chain length. European Biophysics Journal, 1997, 26, 155-162.	2.2	8
62	Enzymatic Electrocatalysis in a Micellar Environment:  Glucose Oxidase Catalysis Mediated by Ferrocene Solubilized by Addition of n-Octyl-β-d-glucoside. The Journal of Physical Chemistry, 1996, 100, 5063-5069.	2.9	18
63	Nanotechnology: R & D challenges and opportunities for application in biotechnology. Trends in Biotechnology, 1995, 13, 474-481.	9.3	21
64	Optimization of RNase A Artificial Hydrophobization in AOT Reversed Micelles. Annals of the New York Academy of Sciences, 1995, 750, 121-124.	3.8	6
65	Vesicle Formation by Enzymic Processes. Journal of the American Chemical Society, 1994, 116, 11582-11583.	13.7	15
66	Fatty Acid Acylation of RNase A Using Reversed Micelles as Microreactors. Biochemical and Biophysical Research Communications, 1993, 196, 447-454.	2.1	21
67	Enzyme-microenvironment dynamic interactions in microstructured media. Pure and Applied Chemistry, 1992, 64, 1757-1763.	1.9	9
68	Enzyme Activity in Microstructured Media. Annals of the New York Academy of Sciences, 1992, 672, 566-572.	3.8	0
69	Enzyme activity in self-evolving microenvironment. Differential microcalorimetry, UV spectrophotometry, HPLC and X-ray scattering studies. Thermochimica Acta, 1992, 204, 35-43.	2.7	4
70	Enzyme Activity in Microstructured Media. Annals of the New York Academy of Sciences, 1992, 672, 566-572.	3.8	2
71	Enzyme Kinetics in a Self Evolving Microstructured Medium. Progress in Biotechnology, 1992, 8, 211-212.	0.2	0
72	Dynamic interactions between enzyme activity and the microstructured environment. FEBS Journal, 1989, 183, 459-463.	0.2	16

#	Article	IF	CITATIONS
73	Production of biosurfactants from sugar alcohols and vegetable oils catalyzed by lipases in a nonaqueous medium. Biotechnology and Bioengineering, 1988, 31, 208-214.	3.3	146
74	Protease-catalyzed regioselective esterification of sugars and related compounds in anhydrous dimethylformamide. Journal of the American Chemical Society, 1988, 110, 584-589.	13.7	469