Raúl Platero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/158377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomics and transcriptomics insights into luteolin effects on the betaâ€rhizobial strain <i>Cupriavidus necator</i> UYPR2.512. Environmental Microbiology, 2022, 24, 240-264.	3.8	3
2	Low CyaA expression and anti ooperative binding of cAMP to CRP frames the scope of the cognate regulon of Pseudomonas putida. Environmental Microbiology, 2021, 23, 1732-1749.	3.8	4
3	Native legumes of the Farrapos protected area in Uruguay establish selective associations with rhizobia in their natural habitat. Soil Biology and Biochemistry, 2020, 148, 107854.	8.8	9
4	The Mo- and Fe-nitrogenases of the endophyte Kosakonia sp. UYSO10 are necessary for growth promotion of sugarcane. Annals of Microbiology, 2019, 69, 741-750.	2.6	8
5	Draft Genome Sequence of Paraburkholderia sp. UYCP14C, a Rhizobium Strain Isolated from Root Nodules of Calliandra parvifolia. Microbiology Resource Announcements, 2019, 8, .	0.6	3
6	Genomic and Postgenomic Approaches to Understand Environmental Microorganisms. International Journal of Genomics, 2018, 2018, 1-2.	1.6	1
7	The interplay of EllA ^{Ntr} with Câ€source regulation of the <i>Pu</i> promoter of <i>Pseudomonas putida</i> mtâ€2. Environmental Microbiology, 2018, 20, 4555-4566.	3.8	3
8	Herbaspirillum seropedicae Differentially Expressed Genes in Response to Iron Availability. Frontiers in Microbiology, 2018, 9, 1430.	3.5	10
9	Draft Genome Sequence of <i>Cupriavidus</i> UYMMa02A, a Novel Beta-Rhizobium Species. Genome Announcements, 2016, 4, .	0.8	3
10	Novel Cupriavidus Strains Isolated from Root Nodules of Native Uruguayan Mimosa Species. Applied and Environmental Microbiology, 2016, 82, 3150-3164.	3.1	63
11	The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Research, 2013, 41, D666-D675.	14.5	556
12	New Betaproteobacterial Rhizobium Strains Able To Efficiently Nodulate Parapiptadenia rigida (Benth.) Brenan. Applied and Environmental Microbiology, 2012, 78, 1692-1700.	3.1	73
13	The Crp regulator of <i>Pseudomonas putida</i> : evidence of an unusually high affinity for its physiological effector, cAMP. Environmental Microbiology, 2012, 14, 702-713.	3.8	14
14	Detection of a new embryonic antigen (ESA-10) in the blood of patients with cancer: preliminary results in the United States. Medical Oncology, 2011, 28, 67-70.	2.5	0
15	Fructose 1-Phosphate Is the Preferred Effector of the Metabolic Regulator Cra of Pseudomonas putida. Journal of Biological Chemistry, 2011, 286, 9351-9359.	3.4	23
16	Sinorhizobium meliloti Fur-Like (Mur) Protein Binds a Fur Box-Like Sequence Present in the mntA Promoter in a Manganese-Responsive Manner. Applied and Environmental Microbiology, 2007, 73, 4832-4838.	3.1	37
17	Iron depletion affects nitrogenase activity and expression ofnifHandnifAgenes inHerbaspirillum seropedicae. FEMS Microbiology Letters, 2006, 258, 214-219.	1.8	16
18	Fur Is Involved in Manganese-Dependent Regulation of mntA (sitA) Expression in Sinorhizobium meliloti. Applied and Environmental Microbiology, 2004, 70, 4349-4355.	3.1	59

#	Article	IF	CITATIONS
19	Identification of an Iron-Regulated, Hemin-Binding Outer Membrane Protein in Sinorhizobium meliloti. Applied and Environmental Microbiology, 2002, 68, 5877-5881.	3.1	23
20	Intracellular Fe content influences nodulation competitiveness of Sinorhizobium meliloti strains as inocula of alfalfa. Soil Biology and Biochemistry, 2002, 34, 593-597.	8.8	14