Jeffrey I Gordon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1583012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human Milk Oligosaccharide Compositions Illustrate Global Variations in Early Nutrition. Journal of Nutrition, 2022, 152, 1239-1253.	2.9	19
2	<i>Bifidobacterium infantis</i> treatment promotes weight gain in Bangladeshi infants with severe acute malnutrition. Science Translational Medicine, 2022, 14, eabk1107.	12.4	61
3	Products of gut microbial Toll/interleukin-1 receptor domain NADase activities in gnotobiotic mice and Bangladeshi children with malnutrition. Cell Reports, 2022, 39, 110738.	6.4	13
4	Gut microbiome development and childhood undernutrition. Cell Host and Microbe, 2022, 30, 617-626.	11.0	9
5	An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123411119.	7.1	12
6	Developing shelf-stable Microbiota Directed Complementary Food (MDCF) prototypes for malnourished children: study protocol for a randomized, single-blinded, clinical study. BMC Pediatrics, 2022, 22, .	1.7	2
7	Microbial liberation of N-methylserotonin from orange fiber in gnotobiotic mice and humans. Cell, 2022, 185, 2495-2509.e11.	28.9	26
8	Microbiota functional activity biosensors for characterizing nutrient metabolism in vivo. ELife, 2021, 10, .	6.0	7
9	A Microbiota-Directed Food Intervention for Undernourished Children. New England Journal of Medicine, 2021, 384, 1517-1528.	27.0	145
10	Strain-level functional variation in the human gut microbiota based on bacterial binding to artificial food particles. Cell Host and Microbe, 2021, 29, 664-673.e5.	11.0	27
11	Gut microbiome contributions to altered metabolism in a pig model of undernutrition. Proceedings of the United States of America, 2021, 118, .	7.1	18
12	Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature, 2021, 595, 91-95.	27.8	70
13	Melding microbiome and nutritional science with early child development. Nature Medicine, 2021, 27, 1503-1506.	30.7	5
14	Diarrhea as a Potential Cause and Consequence of Reduced Gut Microbial Diversity Among Undernourished Children in Peru. Clinical Infectious Diseases, 2020, 71, 989-999.	5.8	35
15	Duodenal Microbiota in Stunted Undernourished Children with Enteropathy. New England Journal of Medicine, 2020, 383, 321-333.	27.0	105
16	Combined Prebiotic and Microbial Intervention Improves Oral Cholera Vaccination Responses in a Mouse Model of Childhood Undernutrition. Cell Host and Microbe, 2020, 27, 899-908.e5.	11.0	38
17	Understanding the mother-breastmilk-infant "triad― Science, 2020, 367, 1070-1072.	12.6	63
18	Identifying determinants of bacterial fitness in a model of human gut microbial succession. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2622-2633	7.1	29

JEFFREY I GORDON

#	Article	IF	CITATIONS
19	Proof-of-concept study of the efficacy of a microbiota-directed complementary food formulation (MDCF) for treating moderate acute malnutrition. BMC Public Health, 2020, 20, 242.	2.9	20
20	Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science, 2019, 365, .	12.6	305
21	A sparse covarying unit that describes healthy and impaired human gut microbiota development. Science, 2019, 365, .	12.6	136
22	Study of Environmental Enteropathy and Malnutrition (SEEM) in Pakistan: protocols for biopsy based biomarker discovery and validation. BMC Pediatrics, 2019, 19, 247.	1.7	22
23	Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell, 2019, 179, 1144-1159.e15.	28.9	140
24	Interspecies Competition Impacts Targeted Manipulation of Human Gut Bacteria by Fiber-Derived Glycans. Cell, 2019, 179, 59-73.e13.	28.9	224
25	Bioremediation of a Common Product of Food Processing by a Human Gut Bacterium. Cell Host and Microbe, 2019, 26, 463-477.e8.	11.0	43
26	Mechanisms by which sialylated milk oligosaccharides impact bone biology in a gnotobiotic mouse model of infant undernutrition. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11988-11996.	7.1	55
27	Transposable elements drive widespread expression of oncogenes in human cancers. Nature Genetics, 2019, 51, 611-617.	21.4	253
28	Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. Cell Reports, 2018, 22, 3440-3453.e6.	6.4	97
29	A multi-amplicon 16S rRNA sequencing and analysis method for improved taxonomic profiling of bacterial communities. Journal of Microbiological Methods, 2018, 154, 6-13.	1.6	44
30	The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Science Translational Medicine, 2017, 9, .	12.4	190
31	Attenuated Effects of Bile Acids on Glucose Metabolism and Insulin Sensitivity in a Male Mouse Model of Prenatal Undernutrition. Endocrinology, 2017, 158, 2441-2452.	2.8	19
32	Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature, 2017, 546, 528-532.	27.8	231
33	Prior Dietary Practices and Connections to a Human Gut Microbial Metacommunity Alter Responses to Diet Interventions. Cell Host and Microbe, 2017, 21, 84-96.	11.0	129
34	Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9105-E9114.	7.1	198
35	The Gut Microbiota, Food Science, and Human Nutrition: A Timely Marriage. Cell Host and Microbe, 2017, 22, 134-141.	11.0	87
36	<i>Lactobacillus reuteri</i> induces gut intraepithelial CD4 ⁺ CD8αα ⁺ T cells. Science, 2017, 357, 806-810.	12.6	543

Jeffrey I Gordon

#	Article	IF	CITATIONS
37	Food and microbiota in the FDA regulatory framework. Science, 2017, 357, 39-40.	12.6	28
38	Bangladesh Environmental Enteric Dysfunction (BEED) study: protocol for a community-based intervention study to validate non-invasive biomarkers of environmental enteric dysfunction. BMJ Open, 2017, 7, e017768.	1.9	47
39	A microbial perspective of human developmental biology. Nature, 2016, 535, 48-55.	27.8	215
40	Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proceedings of the United States of America, 2016, 113, 14805-14810.	7.1	37
41	Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature, 2016, 534, 263-266.	27.8	266
42	Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition. Science Translational Medicine, 2016, 8, 366ra164.	12.4	54
43	Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science, 2016, 352, 1533-1533.	12.6	183
44	Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science, 2016, 351, .	12.6	580
45	Sialylated Milk Oligosaccharides Promote Microbiota-Dependent Growth in Models of Infant Undernutrition. Cell, 2016, 164, 859-871.	28.9	497
46	Characterizing the Interactions between a Naturally Primed Immunoglobulin A and Its Conserved Bacteroides thetaiotaomicron Species-specific Epitope in Gnotobiotic Mice. Journal of Biological Chemistry, 2015, 290, 12630-12649.	3.4	52
47	Feeding the brain and nurturing the mind: Linking nutrition and the gut microbiota to brain development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14105-14112.	7.1	114
48	Identifying strains that contribute to complex diseases through the study of microbial inheritance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 633-640.	7.1	63
49	Where Next for Microbiome Research?. PLoS Biology, 2015, 13, e1002050.	5.6	115
50	Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Science Translational Medicine, 2015, 7, 276ra24.	12.4	280
51	Cultivating Healthy Growth and Nutrition through the Gut Microbiota. Cell, 2015, 161, 36-48.	28.9	155
52	Regulators of Gut Motility Revealed by a Gnotobiotic Model of Diet-Microbiome Interactions Related to Travel. Cell, 2015, 163, 95-107.	28.9	190
53	Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut <i>Bacteroides</i> . Science, 2015, 350, aac5992.	12.6	229
54	Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metabolism, 2015, 22, 516-530.	16.2	433

JEFFREY I GORDON

#	Article	IF	CITATIONS
55	Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11941-11946.	7.1	262
56	Experimental Models of Symbiotic Host-Microbial Relationships: Understanding the Underpinnings of Beneficence and the Origins of Pathogenesis. , 2014, , 147-166.		1
57	Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nature Communications, 2014, 5, 5320.	12.8	322
58	Bacteria from Diverse Habitats Colonize and Compete in the Mouse Gut. Cell, 2014, 159, 253-266.	28.9	324
59	Distinct Contributions of Aire and Antigen-Presenting-Cell Subsets to the Generation of Self-Tolerance in the Thymus. Immunity, 2014, 41, 414-426.	14.3	218
60	Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature, 2014, 515, 423-426.	27.8	335
61	Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature, 2014, 510, 417-421.	27.8	1,019
62	What Is the Value of a Food and Drug Administration Investigational New Drug Application for Fecal Microbiota Transplantation to Treat Clostridium difficile Infection?. Clinical Gastroenterology and Hepatology, 2014, 12, 289-291.	4.4	18
63	Mining the Human Gut Microbiota for Effector Strains that Shape the Immune System. Immunity, 2014, 40, 815-823.	14.3	104
64	The Absence of a Microbiota Enhances TSLP Expression in Mice with Defective Skin Barrier but Does Not Affect the Severity of their Allergic Inflammation. Journal of Investigative Dermatology, 2013, 133, 2714-2721.	0.7	29
65	Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science, 2013, 341, 1241214.	12.6	3,006
66	The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 2013, 11, 497-504.	28.6	1,240
67	Effects of Diet on Resource Utilization by a Model Human Gut Microbiota Containing Bacteroides cellulosilyticus WH2, a Symbiont with an Extensive Glycobiome. PLoS Biology, 2013, 11, e1001637.	5.6	244
68	The Human Gut Microbiota and Undernutrition. Science Translational Medicine, 2012, 4, 137ps12.	12.4	162
69	Human gut microbiome viewed across age and geography. Nature, 2012, 486, 222-227.	27.8	6,247
70	Honor Thy Gut Symbionts Redux. Science, 2012, 336, 1251-1253.	12.6	170
71	The Impact of a Consortium of Fermented Milk Strains on the Gut Microbiome of Gnotobiotic Mice and Monozygotic Twins. Science Translational Medicine, 2011, 3, 106ra106.	12.4	456
72	Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6252-6257.	7.1	656

JEFFREY I GORDON

#	Article	IF	CITATIONS
73	Predicting a Human Gut Microbiota's Response to Diet in Gnotobiotic Mice. Science, 2011, 333, 101-104.	12.6	480
74	Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts. PLoS Biology, 2011, 9, e1001221.	5.6	644
75	QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7, 335-336.	19.0	31,818
76	Dissecting the in Vivo Metabolic Potential of Two Human Gut Acetogens. Journal of Biological Chemistry, 2010, 285, 22082-22090.	3.4	332
77	Identifying Genetic Determinants Needed to Establish a Human Gut Symbiont in Its Habitat. Cell Host and Microbe, 2009, 6, 279-289.	11.0	612
78	Mucosal Glycan Foraging Enhances Fitness and Transmission of a Saccharolytic Human Gut Bacterial Symbiont. Cell Host and Microbe, 2008, 4, 447-457.	11.0	732
79	Myristoylcoa:Protein N-Myristoyltransferase. Advances in Enzymology and Related Areas of Molecular Biology, 2006, 67, 375-430.	1.3	17
80	Response from Jeffrey I. Gordon et al.: Commensal bacteria make a difference. Trends in Microbiology, 2003, 11, 150-151.	7.7	11
81	Commensal Host-Bacterial Relationships in the Gut. Science, 2001, 292, 1115-1118.	12.6	2,018
82	Molecular Analysis of Commensal Host-Microbial Relationships in the Intestine. Science, 2001, 291, 881-884.	12.6	1,907
83	Structures ofSaccharomyces cerevisiaeN-myristoyltransferase with Bound MyristoylCoA and Peptide Provide Insights about Substrate Recognition and Catalysisâ€. Biochemistry, 2001, 40, 6335-6343.	2.5	72
84	Structure of N-myristoyltransferase with bound myristoylCoA and peptide substrate analogs. Nature Structural Biology, 1998, 5, 1091-1097.	9.7	118
85	Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. BioEssays, 1998, 20, 336-343.	2.5	162
86	Novel Biologically Active Nonpeptidic Inhibitors of MyristoylCoA:ProteinN-Myristoyltransferase. Journal of Medicinal Chemistry, 1998, 41, 996-1000.	6.4	52
87	Host–microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. , 1998, 20, 336.		1
88	Î ³ -Ray-induced apoptosis in transgenic mice with proliferative abnormalities in their intestinal epithelium: re-entry of villus enterocytes into the cell cycle does not affect their radioresistance but enhances the radiosensitivity of the crypt by inducing p53. Oncogene, 1997, 15, 131-141.	5.9	36
89	Molecular mechanics of calcium–myristoyl switches. Nature, 1997, 389, 198-202.	27.8	492
90	Phenotype of mice lacking functional Deleted in colorectal cancer (Dec) gene. Nature, 1997, 386, 796-804.	27.8	717

Jeffrey I Gordon

#	Article	IF	CITATIONS
91	Genetic studies reveal that myristoylCoA:protein N-myristoyltransferase is an essential enzyme in Candida albicans. Molecular Microbiology, 1995, 16, 241-250.	2.5	125
92	Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature, 1995, 377, 552-557.	27.8	1,218
93	MyristoylCoA:protein <i>N</i> â€Myristoyltransferase: Probing Hostâ€Guest Interactions Using Synthetic Substrates. Israel Journal of Chemistry, 1992, 32, 127-133.	2.3	4
94	Studies of intestinal stem cells using normal, chimeric, and transgenic mice ¹ . FASEB Journal, 1992, 6, 3039-3050.	0.5	146
95	Comparative analysis of the Î ² transducin family with identification of several new members includingPWP1, a nonessential gene ofSaccharomyces cerevisiae that is divergently transcribed fromNMT1. Proteins: Structure, Function and Bioinformatics, 1992, 13, 41-56.	2.6	95
96	Synthesis of novel tritium labeled oxamyristic acids. Journal of Labelled Compounds and Radiopharmaceuticals, 1991, 29, 157-164.	1.0	1
97	Targeting of proteins into the eukaryotic secretory pathway: Signal peptide structure/function relationships. BioEssays, 1990, 12, 479-484.	2.5	63
98	Proteolytic Processing and Compartmentalization of the Primary Translation Products of Mammalian Apolipoprotein Mrna. Critical Reviews in Biochemistry, 1986, 20, 37-71.	7.5	15
99	Biosynthesis and compartmentalization of rat-intestinal vitamin-D-dependent calcium-binding protein. FEBS Journal, 1984, 139, 561-571.	0.2	10
100	The Human Intestinal Microbiota and Microbiome. , 0, , 635-644.		0