Giulia Licini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1582876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Helicity control of a perfluorinated carbon chain within a chiral supramolecular cage monitored by VCD. Chemical Communications, 2022, 58, 2152-2155.	4.1	8
2	Elucidating Sulfide Activation Mode in Metal-Catalyzed Sulfoxidation Reactivity. Inorganic Chemistry, 2022, 61, 4494-4501.	4.0	5
3	Chiroptical Enhancement of Chiral Dicarboxylic Acids from Confinement in a Stereodynamic Supramolecular Cage. ACS Sensors, 2022, 7, 1390-1394.	7.8	16
4	Tris(2-pyridylmethyl)amines as emerging scaffold in supramolecular chemistry. Coordination Chemistry Reviews, 2021, 427, 213558.	18.8	24
5	Electrocatalytic hydrogen evolution using hybrid electrodes based on single-walled carbon nanohorns and cobalt(<scp>ii</scp>) polypyridine complexes. Journal of Materials Chemistry A, 2021, 9, 20032-20039.	10.3	10
6	Nucleophilicity Prediction <i>via</i> Multivariate Linear Regression Analysis. Journal of Organic Chemistry, 2021, 86, 3555-3564.	3.2	33
7	Enantioselective α-Arylation of Ketones via a Novel Cu(I)–Bis(phosphine) Dioxide Catalytic System. Journal of the American Chemical Society, 2021, 143, 3289-3294.	13.7	32
8	Cu(I)–Bis(phosphine) Dioxides as Catalysts for the Enantioselective α-Arylation of Carbonyl Compounds. Synlett, 2021, 32, 1473-1478.	1.8	1
9	Transition-Metal-Catalyzed Enantioselective α-Arylation of Carbonyl Compounds to Give Tertiary Stereocenters. Synthesis, 2021, 53, 4559-4566.	2.3	5
10	Mixed Multimetallic tris (2â€pyridylmethyl)amine Based Complexes: Synthesis and Chiroptical Properties. European Journal of Inorganic Chemistry, 2021, 2021, 2942-2946.	2.0	1
11	Dissection of the Polar and Nonâ€Polar Contributions to Aromatic Stacking Interactions in Solution. Angewandte Chemie, 2021, 133, 24064.	2.0	2
12	Dissection of the Polar and Nonâ€Polar Contributions to Aromatic Stacking Interactions in Solution. Angewandte Chemie - International Edition, 2021, 60, 23871-23877.	13.8	14
13	Chiral recognition <i>via</i> a stereodynamic vanadium probe using the electronic circular dichroism effect in differential Raman scattering. Physical Chemistry Chemical Physics, 2021, 23, 23336-23340.	2.8	7
14	Straight from the bottle! Wine and juice dicarboxylic acids as templates for supramolecular cage self-assembly. Chemical Communications, 2021, 57, 10019-10022.	4.1	10
15	Computational Analysis of Enantioselective Pd-Catalyzed α-Arylation of Ketones. Journal of Organic Chemistry, 2020, 85, 11511-11518.	3.2	13
16	Organic Polyradicals as Redox Mediators: Effect of Intramolecular Radical Interactions on Their Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 45968-45975.	8.0	3
17	Tripodal gold(<scp>i</scp>) polypyridyl complexes and their Cu ⁺ and Zn ²⁺ heterometallic derivatives. Effects on luminescence. Dalton Transactions, 2020, 49, 14613-14625.	3.3	5
18	Heteroâ€Coencapsulation within a Supramolecular Cage: Moving away from the Statistical Distribution of Different Guests. Chemistry - A European Journal, 2020, 26, 9454-9458.	3.3	7

#	Article	IF	CITATIONS
19	Tris-pyridylmethylamine (TPMA) complexes functionalized with persistent nitronyl nitroxide organic radicals. Dalton Transactions, 2020, 49, 10011-10016.	3.3	3
20	A Diastereodynamic Probe Transducing Molecular Length into Chiroptical Readout. Journal of the American Chemical Society, 2019, 141, 11963-11969.	13.7	29
21	Supramolecular cage encapsulation as a versatile tool for the experimental quantification of aromatic stacking interactions. Chemical Science, 2019, 10, 1466-1471.	7.4	20
22	Three-Dimensional Porous Architectures Based on MnII/III Three-Blade Paddle Wheel Metallacryptates. Crystal Growth and Design, 2019, 19, 1954-1964.	3.0	4
23	Extending substrate sensing capabilities of zinc tris(2â€pyridylmethyl)amineâ€based stereodynamic probe. Chirality, 2019, 31, 375-383.	2.6	4
24	Supramolecular cages as differential sensors for dicarboxylate anions: guest length sensing using principal component analysis of ESI-MS and ¹ H-NMR raw data. Chemical Science, 2019, 10, 3523-3528.	7.4	38
25	Binding Profiles of Selfâ€Assembled Supramolecular Cages from ESIâ€MS Based Methodology. Chemistry - A European Journal, 2018, 24, 2936-2943.	3.3	25
26	Efficient Vanadiumâ€Catalyzed Aerobic Câ^'C Bond Oxidative Cleavage of Vicinal Diols. Advanced Synthesis and Catalysis, 2018, 360, 3286-3296.	4.3	38
27	A stereodynamic fluorescent probe for amino acids. Circular dichroism and circularly polarized luminescence analysis. Chirality, 2018, 30, 65-73.	2.6	19
28	Diasteroselective multi-component assemblies from dynamic covalent imine condensation and metal-coordination chemistry: mechanism and narcissistic stereochemistry self-sorting. RSC Advances, 2018, 8, 19494-19498.	3.6	11
29	Secondâ€Generation Tris(2â€pyridylmethyl)amine–Zinc Complexes as Probes for Enantiomeric Excess Determination of Amino Acids. European Journal of Organic Chemistry, 2017, 2017, 1438-1442.	2.4	19
30	Vanadium(V) Catalysts with High Activity for the Coupling of Epoxides and CO ₂ : Characterization of a Putative Catalytic Intermediate. ACS Catalysis, 2017, 7, 2367-2373.	11.2	93
31	Triggering Assembly and Disassembly of a Supramolecular Cage. Journal of the American Chemical Society, 2017, 139, 6456-6460.	13.7	59
32	Concentration-Independent Stereodynamic <i>g</i> -Probe for Chiroptical Enantiomeric Excess Determination. Journal of the American Chemical Society, 2017, 139, 15616-15619.	13.7	49
33	Tuning the reactivity and efficiency of copper catalysts for atom transfer radical polymerization by synthetic modification of tris(2-methylpyridyl)amine. Polymer, 2017, 128, 169-176.	3.8	41
34	Synthesis, Characterization and Catalytic Activity of a Tungsten(VI) Amino Triphenolate Complex. Catalysis Letters, 2017, 147, 2313-2318.	2.6	9
35	Cobalt, nickel, and iron complexes of 8-hydroxyquinoline-di(2-picolyl)amine for light-driven hydrogen evolution. Dalton Transactions, 2017, 46, 16455-16464.	3.3	24
36	Heterolytic (2 e) vs Homolytic (1 e) Oxidation Reactivity: Nâ^'H versus Câ^'H Switch in the Oxidation of Lactams by Dioxirans. Chemistry - A European Journal, 2017, 23, 259-262.	3.3	21

#	Article	IF	CITATIONS
37	Discrimination of Octahedral versus Trigonal Bipyramidal Coordination Geometries of Homogeneous TiIV, VV, and MoVIAmino Triphenolate Complexes through Nitroxyl Radical Units. European Journal of Inorganic Chemistry, 2016, 2016, 4968-4973.	2.0	10
38	Small molecule activation. Dalton Transactions, 2016, 45, 14419-14420.	3.3	17
39	Discrimination of Octahedral versus Trigonal Bipyramidal Coordination Geometries of Homogeneous TilV , VV , and MoVI Amino Triphenolate Complexes through Nitroxyl Radical Units. European Journal of Inorganic Chemistry, 2016, 2016, 4939-4939.	2.0	0
40	Multimetallic Architectures from the Selfâ€assembly of Amino Acids and Tris(2â€pyridylmethyl)amine Zinc(II) Complexes: Circular Dichroism Enhancement by Chromophores Organization. Chemistry - A European Journal, 2016, 22, 6515-6518.	3.3	40
41	Co(<scp>ii</scp>)-induced giant vibrational CD provides a new design of methods for rapid and sensitive chirality recognition. Chemical Communications, 2016, 52, 8428-8431.	4.1	39
42	Effective bromo and chloro peroxidation catalysed by tungsten(<scp>vi</scp>) amino triphenolate complexes. Dalton Transactions, 2016, 45, 14603-14608.	3.3	22
43	Mononuclear Iron(III) Complexes as Functional Models of Catechol Oxidases and Catalases. European Journal of Inorganic Chemistry, 2015, 2015, 3478-3484.	2.0	14
44	Viral nano-hybrids for innovative energy conversion and storage schemes. Journal of Materials Chemistry B, 2015, 3, 6718-6730.	5.8	10
45	Vanadium catalyzed aerobic carbon–carbon cleavage. Coordination Chemistry Reviews, 2015, 301-302, 147-162.	18.8	63
46	lridium-mediated Bond Activation and Water Oxidation as an Exemplary Case of CARISMA, A European Network for the Development of Catalytic Routines for Small Molecule Activation. Chimia, 2015, 69, 316-320.	0.6	0
47	Revisiting the Hammett <i>̈̈̈́́, /i> Parameter for the Determination of Philicity: Nucleophilic Substitution with Inverse Charge Interaction. Angewandte Chemie - International Edition, 2013, 52, 2911-2914.</i>	13.8	10
48	Nonâ€covalent Activation of a Titanium(IV) Oxygenâ€Transfer Catalyst. Chemistry - A European Journal, 2013, 19, 9438-9441.	3.3	14
49	Determination of Amino Acid Enantiopurity and Absolute Configuration: Synergism between Configurationally Labile Metalâ€Based Receptors and Dynamic Covalent Interactions. Chemistry - A European Journal, 2013, 19, 16809-16813.	3.3	47
50	Reactivity Control in Iron(III) Amino Triphenolate Complexes: Comparison of Monomeric and Dimeric Complexes. Inorganic Chemistry, 2012, 51, 10639-10649.	4.0	66
51	Mechanistic aspects of vanadium catalysed oxidations with peroxides. Coordination Chemistry Reviews, 2011, 255, 2165-2177.	18.8	189
52	Effective Synthesis of <i>ortho</i> â€6ubstituted Trithiophenol Amines by Miyazaki–Newman–Kwart Rearrangement. European Journal of Organic Chemistry, 2011, 2011, 5636-5640.	2.4	10
53	Enantiopure Ti(IV) amino triphenolate complexes as NMR chiral solvating agents. Chirality, 2011, 23, 796-800.	2.6	23
54	Recent advances in vanadium catalyzed oxygen transfer reactions. Coordination Chemistry Reviews, 2011, 255, 2345-2357.	18.8	155

#	Article	IF	CITATIONS
55	Effective Oxidation of Secondary Amines to Nitrones with Alkyl Hydroperoxides Catalysed by (Trialkanolaminato)titanium(IV) Complexes. European Journal of Organic Chemistry, 2010, 2010, 740-748.	2.4	19
56	Molybdenum(VI) Amino Triphenolate Complexes as Catalysts for Sulfoxidation, Epoxidation and Haloperoxidation. Advanced Synthesis and Catalysis, 2010, 352, 2937-2942.	4.3	53
57	Stereoselective Control by Faceâ€toâ€Face Versus Edgeâ€toâ€Face Aromatic Interactions: The Case of <i>C</i> ₃ â€Ti ^{IV} Amino Trialkolate Sulfoxidation Catalysts. Chemistry - A European Journal, 2010, 16, 645-654.	3.3	33
58	Ti(iv)-amino triphenolate complexes as effective catalysts for sulfoxidation. Dalton Transactions, 2010, 39, 7384.	3.3	46
59	Role of Intermolecular Interactions in Oxygen Transfer Catalyzed by Silsesquioxane Trisilanolate Vanadium(V). Inorganic Chemistry, 2009, 48, 4724-4728.	4.0	31
60	Amine triphenolate complexes: synthesis, structure and catalytic activity. Dalton Transactions, 2009, , 5265.	3.3	78
61	<i>C</i> ₃ â€5ymmetric Titanium(IV) Triphenolate Amino Complexes for a Fast and Effective Oxidation of Secondary Amines to Nitrones with Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2008, 350, 2503-2506.	4.3	43
62	C3 Vanadium(V) Amine Triphenolate Complexes: Vanadium Haloperoxidase Structural and Functional Models. Inorganic Chemistry, 2008, 47, 8616-8618.	4.0	103
63	C3-Symmetric Ti(IV) Triphenolate Amino Complexes as Sulfoxidation Catalysts with Aqueous Hydrogen Peroxide. Organic Letters, 2007, 9, 21-24.	4.6	93
64	Stereoselective Iodocyclization of (S)-Allylalanine Derivatives: γ-Lactone vs Cyclic Carbamate Formation. Organic Letters, 2007, 9, 2365-2368.	4.6	25
65	Stereoselective dimerization of racemic C3-symmetric Ti(iv) amine triphenolate complexes. Dalton Transactions, 2007, , 1573-1576.	3.3	25
66	Glycine- and Sarcosine-Based Models of Vanadate-Dependent Haloperoxidases in Sulfoxygenation Reactions. Inorganic Chemistry, 2007, 46, 196-207.	4.0	70
67	Effective synthesis of ortho-substituted triphenol amines via reductive amination. Tetrahedron Letters, 2006, 47, 2735-2738.	1.4	33
68	Ti(IV)/trialkanolamine catalytic polymeric membranes: Preparation, characterization, and use in oxygen transfer reactions. Journal of Catalysis, 2006, 238, 221-231.	6.2	21
69	Cα-Tetrasubstituted Amino Acid Based Peptides in Asymmetric Catalysis. Biopolymers, 2006, 84, 97-104.	2.4	17
70	Chiral, Enantiopure Aluminum(III) and Titanium(IV) Azatranes. European Journal of Inorganic Chemistry, 2006, 2006, 1032-1040.	2.0	11
71	Oligopeptide Foldamers: From Structure to Function. European Journal of Organic Chemistry, 2005, 2005, 969-977.	2.4	86
72	Oligopeptide Foldamers: From Structure to Function. ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
73	Ti(IV)-based catalytic membranes for efficient and selective oxidation of secondary amines. Tetrahedron Letters, 2004, 45, 7515-7518.	1.4	18
74	On the Mechanism of the Oxygen Transfer to Sulfoxides by (Peroxo)[tris(hydroxyalkyl)amine]TiIV Complexesâ^' Evidence for a Metal-Template-Assisted Process. European Journal of Organic Chemistry, 2003, 2003, 507-511.	2.4	18
75	A "Waterproof―Catalyst for the Oxidation of Secondary Amines to Nitrones with Alkyl Hydroperoxides ChemInform, 2003, 34, no.	0.0	0
76	Metal-Ion-Binding Peptides: From Catalysis to Protein Tagging ChemInform, 2003, 34, no.	0.0	0
77	Catalysis of Oxo Transfer to Prochiral Sulfides by Oxovanadium(V) Compounds That Model the Active Center of Haloperoxidases. Chemistry - A European Journal, 2003, 9, 4700-4708.	3.3	66
78	Metal-Ion-Binding Peptides: From Catalysis to Protein Tagging. Angewandte Chemie - International Edition, 2003, 42, 4572-4575.	13.8	21
79	The medicinal and catalytic potential of model complexes of vanadate-dependent haloperoxidases. Coordination Chemistry Reviews, 2003, 237, 53-63.	18.8	168
80	A â€~waterproof' catalyst for the oxidation of secondary amines to nitrones with alkyl hydroperoxides. Tetrahedron Letters, 2003, 44, 49-52.	1.4	39
81	A Correlation between the Absolute Configuration of Alkyl Aryl Sulfoxides and Their Helical Twisting Powers in Nematic Liquid Crystals. Journal of Organic Chemistry, 2003, 68, 519-526.	3.2	43
82	Selective phosphatidylethanolamine translocation across vesicle membranes using synthetic translocases. Chemical Communications, 2002, , 260-261.	4.1	9
83	Highly regioselective microwave-assisted synthesis of enantiopure C3-symmetric trialkanolamines. Tetrahedron Letters, 2002, 43, 2581-2584.	1.4	32
84	Duality of Mechanism in the Tetramethylfluoroformamidinium Hexafluorophosphate-Mediated Synthesis ofN-Benzyloxycarbonylamino Acid Fluorides. Journal of Organic Chemistry, 2001, 66, 5905-5910.	3.2	25
85	Allosteric Regulation of an HIV-1 Protease Inhibitor by ZnII Ions. Angewandte Chemie - International Edition, 2001, 40, 3899-3902.	13.8	13
86	Metal-driven self assembly of C3 symmetry molecular cages. Chemical Communications, 2000, , 1087-1088.	4.1	26
87	Enantioselective Ti(IV) Sulfoxidation Catalysts BearingC3-Symmetric Trialkanolamine Ligands:Â Solution Speciation by1H NMR and ESI-MS Analysis. Journal of the American Chemical Society, 1999, 121, 6258-6268.	13.7	83
88	The First Chiral Zirconium(IV) Catalyst for Highly Stereoselective Sulfoxidation. Journal of Organic Chemistry, 1999, 64, 1326-1330.	3.2	71
89	Use of electrospray ionization mass spectrometry to characterize chiral reactive intermediates in a titanium alkoxide mediated sulfoxidation reaction. Chemical Communications, 1997, , 869-870.	4.1	33
90	Titanium(IV)â^'(R,R,R)-Tris(2-phenylethoxy)amineâ^' Alkylperoxo Complex Mediated Oxidations:Â The Biphilic Nature of the Oxygen Transfer to Organic Sulfur Compounds. Journal of the American Chemical Society. 1997. 119. 6935-6936.	13.7	81

#	Article	IF	CITATIONS
91	Enantioselective Titanium-Catalyzed Sulfides Oxidation:Â Novel Ligands Provide Significantly Improved Catalyst Life. Journal of Organic Chemistry, 1996, 61, 5175-5177.	3.2	152
92	Synthesis and Diels-Alder reactions of enantiopure (â^')-trans-benzo[d]-dithiine-S,S'-dioxide. Tetrahedron: Asymmetry, 1996, 7, 369-372.	1.8	16
93	Enantioselective oxidation of thioethers1: An easy route to enantiopure C2 symmetrical bis-methylsulfinylbenzenes. Tetrahedron Letters, 1993, 34, 2975-2978.	1.4	31
94	Enantioselective Oxidation of Thioethers. An Improved Route to the Resolution of [1,1′-Binaphthalene]-2,2′-Dithiol. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 74, 399-400.	1.6	3
95	Enantioselective oxidation of thioethers: synthesis of trans-2-N,N-dialkylacetamide-1,3-dithiolanes-S-oxide and their use in asymmetric aldol-type reactions. Tetrahedron Letters, 1992, 33, 3043-3044.	1.4	28
96	Assembling Synthons in a Chiral Form: Equivalence of 6H, 12H-Dibenzo[b,f][1,5]dithiocin-S,S′-dioxide to Two Chiral Benzyl Units. Tetrahedron Letters, 1992, 33, 2053-2054.	1.4	12
97	1,2-bis(ARYLSULFONYL)ALKENES. A REVIEW. Organic Preparations and Procedures International, 1991, 23, 571-592.	1.3	11
98	Regio- and stereocontrol in the intramolecular nitrile oxide cycloaddition to 2-furylthiol- and 2-furylmethanethiol derivatives Tetrahedron, 1991, 47, 3869-3886.	1.9	8
99	Enantioselective oxidation of β-hydroxythioethers. Synthesis of optically active alcohols and epoxides. Tetrahedron: Asymmetry, 1991, 2, 257-276.	1.8	27
100	Titanium-Promoted Enantioselective Oxidation of Thioethers and Synthetic Applications. Studies in Surface Science and Catalysis, 1991, , 385-394.	1.5	5
101	Enantioselective S-Oxidation: Synthetic Applications. Catalysis By Metal Complexes, 1991, , 91-105.	0.6	4
102	Ethylenbis(sulfonyl)â€Ã¼berbrücktes 1,1′â€Binaphthalin, ein atropisomeres Dienophil für hochdiastereoselektive Dielsâ€Alderâ€Reaktionen. Angewandte Chemie, 1989, 101, 767-768.	2.0	7
103	Ethylenebis(sulfonyl)-bridged 1,1′-Binaphthalene, an Atropisomeric Dienophile for Highly Diastereoselective Diels-Alder Reactions. Angewandte Chemie International Edition in English, 1989, 28, 766-767.	4.4	12
104	Asymmetric oxidation of thioethers. Optical resolution of [1,1′-binaphthalene]-2,2′-dithiol. Tetrahedron Letters, 1989, 30, 2575-2576.	1.4	30
105	Asymmetric oxidation of thioethers. Tetrahedron Letters, 1989, 30, 4859-4862.	1.4	32
106	Intramolecular asymmetric tandem additions to chiral naphthyl oxazolines. Tetrahedron Letters, 1989, 30, 4049-4052.	1.4	23
107	Atropisomeric sulphur compounds in organic synthesis: generation and reactions of the carbanions of dinaphtho[2,1-d:1′,2′-f][1,3]dithiepine and its oxides. Journal of the Chemical Society Chemical Communications, 1989, , 411-412.	2.0	16
108	Mass spectrometric investigation of substituted 1,3-emthiolaneS-oxides. Organic Mass Spectrometry, 1988, 23, 841-845.	1.3	5

#	Article	IF	CITATIONS
109	Reactivity of phenyl(tolylsulfonyl)acetylene towards dienes and homo-dienes: cycloadditions versus fragmentation-addition reactions. Tetrahedron Letters, 1988, 29, 831-834.	1.4	23
110	Consequences of fixing three parallel coplanar double bonds in close proximity with different geometries. Synthesis and spectral parameters of syn- and anti-sesquinorbornatriene. Journal of the American Chemical Society, 1986, 108, 3453-3460.	13.7	40
111	Asymmetric oxidation of 1,3-dithiolanes. A route to the optical resolution of carbonyl compounds. Tetrahedron Letters, 1986, 27, 6257-6260.	1.4	69
112	Thermal and photochemical addition of phenyl(arylsulphonyl)acetylenes to alkenes. Journal of the Chemical Society Chemical Communications, 1985, , 1597.	2.0	19
113	anti-1,4,5,8-Tetrahydro-1,4;5,8-dimethanonaphthalene (sesquinorbornadiene), a molecule with three parallel, coplanar, and interacting double bonds. Journal of the Chemical Society Chemical Communications, 1985, , 418.	2.0	8