
Reto Knutti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1582705/publications.pdf Version: 2024-02-01

Ρετο Κνιμττι

#	Article	IF	CITATIONS
1	Climate Scenarios for Switzerland CH2018 – Approach and Implications. Climate Services, 2022, 26, 100288.	1.0	12
2	Mapping urban temperature using crowd-sensing data and machine learning. Urban Climate, 2021, 35, 100739.	2.4	31
3	Pacific variability reconciles observed and modelled global mean temperature increase since 1950. Climate Dynamics, 2021, 56, 613-634.	1.7	11
4	Constraining human contributions to observed warming since the pre-industrial period. Nature Climate Change, 2021, 11, 207-212.	8.1	108
5	Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6. Earth System Dynamics, 2021, 12, 253-293.	2.7	236
6	Urban multi-model climate projections of intense heat in Switzerland. Climate Services, 2021, 22, 100228.	1.0	7
7	Very rare heat extremes: quantifying and understanding using ensemble re-initialization. Journal of Climate, 2021, , 1-46.	1.2	15
8	Assessing the representational accuracy of data-driven models: The case of the effect of urban green infrastructure on temperature. Environmental Modelling and Software, 2021, 141, 105048.	1.9	5
9	Increasing probability of record-shattering climate extremes. Nature Climate Change, 2021, 11, 689-695.	8.1	224
10	The potential for structural errors in emergent constraints. Earth System Dynamics, 2021, 12, 899-918.	2.7	19
11	A New Framework for Identifying and Investigating Seasonal Climate Extremes. Journal of Climate, 2021, 34, 7761-7782.	1.2	4
12	An integrated approach to quantifying uncertainties in the remaining carbon budget. Communications Earth & Environment, 2021, 2, .	2.6	52
13	Robust detection of forced warming in the presence of potentially large climate variability. Science Advances, 2021, 7, eabh4429.	4.7	11
14	Climate change now detectable from any single day of weather at global scale. Nature Climate Change, 2020, 10, 35-41.	8.1	154
15	Equilibrium Climate Sensitivity Estimated by Equilibrating Climate Models. Geophysical Research Letters, 2020, 47, e2019GL083898.	1.5	84
16	An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence. Reviews of Geophysics, 2020, 58, e2019RG000678.	9.0	498
17	Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nature Geoscience, 2020, 13, 769-779.	5.4	68
18	CH2018 – National climate scenarios for Switzerland: How to construct consistent multi-model projections from ensembles of opportunity. Climate Services, 2020, 20, 100196.	1.0	19

#	Article	IF	CITATIONS
19	Lack of Change in the Projected Frequency and Persistence of Atmospheric Circulation Types Over Central Europe. Geophysical Research Letters, 2020, 47, e2019GL086132.	1.5	34
20	Past warming trend constrains future warming in CMIP6 models. Science Advances, 2020, 6, eaaz9549.	4.7	327
21	Understanding and assessing uncertainty of observational climate datasets for model evaluation using ensembles. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e654.	3.6	23
22	Argument-based assessment of predictive uncertainty of data-driven environmental models. Environmental Modelling and Software, 2020, 134, 104754.	1.9	10
23	Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 2020, 10, 277-286.	8.1	436
24	Late 1980s abrupt cold season temperature change in Europe consistent with circulation variability and long-term warming. Environmental Research Letters, 2020, 15, 094056.	2.2	15
25	Uncertainty in carbon budget estimates due to internal climate variability. Environmental Research Letters, 2020, 15, 104064.	2.2	7
26	Comparing Methods to Constrain Future European Climate Projections Using a Consistent Framework. Journal of Climate, 2020, 33, 8671-8692.	1.2	37
27	Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth System Dynamics, 2020, 11, 491-508.	2.7	255
28	An investigation of weighting schemes suitable for incorporating large ensembles into multi-model ensembles. Earth System Dynamics, 2020, 11, 807-834.	2.7	39
29	Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth System Dynamics, 2020, 11, 995-1012.	2.7	135
30	Customising global climate science for national adaptation: A case study of climate projections in UNFCCC's National Communications. Environmental Science and Policy, 2019, 101, 16-23.	2.4	13
31	The concerns of the young protesters are justified: A statement by <i>Scientists for Future</i> concerning the protests for more climate protection. Gaia, 2019, 28, 79-87.	0.3	56
32	Weak dependence of future global mean warming on the background climate state. Climate Dynamics, 2019, 53, 5079-5099.	1.7	6
33	ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics, 2019, 10, 379-452.	2.7	46
34	Quantifying uncertainty in European climate projections using combined performance-independence weighting. Environmental Research Letters, 2019, 14, 124010.	2.2	64
35	LongRunMIP: Motivation and Design for a Large Collection of Millennial-Length AOGCM Simulations. Bulletin of the American Meteorological Society, 2019, 100, 2551-2570.	1.7	65
36	Closing the Knowledge-Action Gap in Climate Change. One Earth, 2019, 1, 21-23.	3.6	51

#	Article	IF	CITATIONS
37	Uncovering the Forced Climate Response from a Single Ensemble Member Using Statistical Learning. Journal of Climate, 2019, 32, 5677-5699.	1.2	45
38	Uncertainty Quantification Using Multiple Models—Prospects and Challenges. Simulation Foundations, Methods and Applications, 2019, , 835-855.	0.8	10
39	Ensemble optimisation, multiple constraints and overconfidence: a case study with future Australian precipitation change. Climate Dynamics, 2019, 53, 1581-1596.	1.7	17
40	Concerns of young protesters are justified. Science, 2019, 364, 139-140.	6.0	96
41	ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing. Earth System Dynamics, 2019, 10, 91-105.	2.7	92
42	Applying big data beyond small problems in climate research. Nature Climate Change, 2019, 9, 196-202.	8.1	51
43	Multidecadal Variability in Global Surface Temperatures Related to the Atlantic Meridional Overturning Circulation. Journal of Climate, 2018, 31, 2889-2906.	1.2	25
44	Prospects and Caveats of Weighting Climate Models for Summer Maximum Temperature Projections Over North America. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4509-4526.	1.2	72
45	Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets. Environmental Research Letters, 2018, 13, 010201.	2.2	75
46	Evaluating the accuracy of climate change pattern emulation for low warming targets. Environmental Research Letters, 2018, 13, 055006.	2.2	28
47	The Uneven Nature of Daily Precipitation and Its Change. Geophysical Research Letters, 2018, 45, 11,980.	1.5	112
48	A wider role for climate scenarios. Nature Sustainability, 2018, 1, 214-215.	11.5	3
49	On the Linearity of Local and Regional Temperature Changes from 1.5°C to 2°C of Global Warming. Journal of Climate, 2018, 31, 7495-7514.	1.2	30
50	Selecting a climate model subset to optimise key ensemble properties. Earth System Dynamics, 2018, 9, 135-151.	2.7	103
51	Biased Estimates of Changes in Climate Extremes From Prescribed SST Simulations. Geophysical Research Letters, 2018, 45, 8500-8509.	1.5	44
52	Climate Model Confirmation: From Philosophy to Predicting Climate in the Real World. , 2018, , 325-359.		14
53	Testing a weather generator for downscaling climate change projections over Switzerland. International Journal of Climatology, 2017, 37, 928-942.	1.5	22
54	A climate model projection weighting scheme accounting for performance and interdependence. Geophysical Research Letters, 2017, 44, 1909-1918.	1.5	278

#	Article	IF	CITATIONS
55	Building confidence in climate model projections: an analysis of inferences from fit. Wiley Interdisciplinary Reviews: Climate Change, 2017, 8, e454.	3.6	73
56	Reconciling controversies about the â€~global warming hiatus'. Nature, 2017, 545, 41-47.	13.7	346
57	The Uncertainty in the Transient Climate Response to Cumulative CO ₂ Emissions Arising from the Uncertainty in Physical Climate Parameters. Journal of Climate, 2017, 30, 813-827.	1.2	36
58	Contribution of Atlantic and Pacific Multidecadal Variability to Twentieth-Century Temperature Changes. Journal of Climate, 2017, 30, 6279-6295.	1.2	33
59	Emergent Constraints in Climate Projections: A Case Study of Changes in High-Latitude Temperature Variability. Journal of Climate, 2017, 30, 3655-3670.	1.2	27
60	Delays in US mitigation could rule out Paris targets. Nature Climate Change, 2017, 7, 92-94.	8.1	32
61	Potential to Constrain Projections of Hot Temperature Extremes. Journal of Climate, 2017, 30, 9949-9964.	1.2	18
62	Future local climate unlike currently observed anywhere. Environmental Research Letters, 2017, 12, 084004.	2.2	19
63	Beyond equilibrium climate sensitivity. Nature Geoscience, 2017, 10, 727-736.	5.4	217
64	Models are likely to underestimate increase in heavy rainfall in the extratropical regions with high rainfall intensity. Geophysical Research Letters, 2017, 44, 7401-7409.	1.5	25
65	The social and scientific values that shape national climate scenarios: a comparison of the Netherlands, Switzerland and the UK. Regional Environmental Change, 2017, 17, 2325-2338.	1.4	36
66	Improved Consistency of Climate Projections over Europe after Accounting for Atmospheric Circulation Variability. Journal of Climate, 2017, 30, 7271-7291.	1.2	12
67	Precipitation variability increases in a warmer climate. Scientific Reports, 2017, 7, 17966.	1.6	395
68	Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks. Atmospheric Chemistry and Physics, 2017, 17, 9535-9546.	1.9	43
69	Skill and independence weighting for multi-model assessments. Geoscientific Model Development, 2017, 10, 2379-2395.	1.3	141
70	Community climate simulations to assess avoided impacts in 1.5 and 2â€~ °C futures. Earth System Dynamics, 2017, 8, 827-847.	2.7	153
71	Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences, 2016, 13, 2123-2136.	1.3	43
72	The Detection and Attribution Model Intercomparison Project (DAMIPÂv1.0) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3685-3697.	1.3	280

ΓΕΤΟ ΚΝΟΤΤΙ

#	Article	IF	CITATIONS
73	The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 2016, 9, 3461-3482.	1.3	2,084
74	Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2626-2637.	1.2	108
75	Mixedâ€layer ocean responses to anthropogenic aerosol dimming from 1870 to 2000. Journal of Geophysical Research D: Atmospheres, 2016, 121, 49-66.	1.2	8
76	Enhancement of non O ₂ radiative forcing via intensified carbon cycle feedbacks. Geophysical Research Letters, 2016, 43, 5833-5840.	1.5	11
77	Reconciling observed and modeled temperature and precipitation trends over Europe by adjusting for circulation variability. Geophysical Research Letters, 2016, 43, 8189-8198.	1.5	40
78	The scientific veneer of IPCC visuals. Climatic Change, 2016, 138, 369-381.	1.7	20
79	Science and policy characteristics of the Paris Agreement temperature goal. Nature Climate Change, 2016, 6, 827-835.	8.1	536
80	Dependence of global radiative feedbacks on evolving patterns of surface heat fluxes. Geophysical Research Letters, 2016, 43, 9877-9885.	1.5	82
81	Observed heavy precipitation increase confirms theory and early models. Nature Climate Change, 2016, 6, 986-991.	8.1	444
82	Nonlinearities in patterns of longâ€ŧerm ocean warming. Geophysical Research Letters, 2016, 43, 3380-3388.	1.5	25
83	Multiannual Ocean–Atmosphere Adjustments to Radiative Forcing. Journal of Climate, 2016, 29, 5643-5659.	1.2	34
84	Mapping the climate change challenge. Nature Climate Change, 2016, 6, 663-668.	8.1	75
85	Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 2016, 529, 477-483.	13.7	491
86	A scientific critique of the two-degree climate change target. Nature Geoscience, 2016, 9, 13-18.	5.4	282
87	Differences between carbon budget estimates unravelled. Nature Climate Change, 2016, 6, 245-252.	8.1	228
88	Geosciences after Paris. Nature Geoscience, 2016, 9, 187-189.	5.4	51
89	Southern <scp>O</scp> cean eddy phenomenology. Journal of Geophysical Research: Oceans, 2015, 120, 7413-7449.	1.0	129
90	Dimming over the oceans: Transient anthropogenic aerosol plumes in the twentieth century. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3465-3484.	1.2	11

ΓΕΤΟ ΚΝΟΤΤΙ

#	Article	IF	CITATIONS
91	Impact of short-lived non-CO ₂ mitigation on carbon budgets for stabilizing global warming. Environmental Research Letters, 2015, 10, 075001.	2.2	63
92	Improved pattern scaling approaches for the use in climate impact studies. Geophysical Research Letters, 2015, 42, 3486-3494.	1.5	71
93	Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO ₂ forcings. Environmental Research Letters, 2015, 10, 125003.	2.2	60
94	Mitigation choices impact carbon budget size compatible with low temperature goals. Environmental Research Letters, 2015, 10, 075003.	2.2	29
95	Implementation and validation of a Wilks-type multi-site daily precipitation generator over a typical Alpine river catchment. Hydrology and Earth System Sciences, 2015, 19, 2163-2177.	1.9	23
96	Zero emission targets as long-term global goals for climate protection. Environmental Research Letters, 2015, 10, 105007.	2.2	220
97	Addressing Interdependency in a Multimodel Ensemble by Interpolation of Model Properties. Journal of Climate, 2015, 28, 5150-5170.	1.2	127
98	The unseen uncertainties in climate change: reviewing comprehension of an IPCC scenario graph. Climatic Change, 2015, 133, 141-154.	1.7	54
99	The legacy of our CO2 emissions: a clash of scientific facts, politics and ethics. Climatic Change, 2015, 133, 361-373.	1.7	90
100	Is there room for geoengineering in the optimal climate policy mix?. Environmental Science and Policy, 2015, 48, 67-76.	2.4	30
101	A Representative Democracy to Reduce Interdependency in a Multimodel Ensemble. Journal of Climate, 2015, 28, 5171-5194.	1.2	272
102	Anthropogenic contribution to global occurrenceÂof heavy-precipitation andÂhigh-temperature extremes. Nature Climate Change, 2015, 5, 560-564.	8.1	921
103	Contributions of atmospheric circulation variability and data coverage bias to the warming hiatus. Geophysical Research Letters, 2015, 42, 2385-2391.	1.5	24
104	Feedbacks, climate sensitivity and the limits of linear models. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20150146.	1.6	98
105	Sensitivity of European extreme daily temperature return levels to projected changes in mean and variance. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3032-3044.	1.2	8
106	Climate change in Switzerland: a review of physical, institutional, and political aspects. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5, 461-481.	3.6	21
107	Half of the world's population experience robust changes in the water cycle for a 2 °C warmer world. Environmental Research Letters, 2014, 9, 044008.	2.2	24
108	Implications of potentially lower climate sensitivity on climate projections and policy. Environmental Research Letters, 2014, 9, 031003.	2.2	48

#	Article	IF	CITATIONS
109	Models agree on forced response pattern of precipitation and temperature extremes. Geophysical Research Letters, 2014, 41, 8554-8562.	1.5	159
110	Estimating climate sensitivity and future temperature in the presence of natural climate variability. Geophysical Research Letters, 2014, 41, 2086-2092.	1.5	14
111	Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks. Journal of Climate, 2014, 27, 511-526.	1.2	870
112	Influence of the western North Atlantic and the Barents Sea on European winter climate. Geophysical Research Letters, 2014, 41, 561-567.	1.5	21
113	Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geoscience, 2014, 7, 709-715.	5.4	615
114	Uncertainties in the timing of unprecedented climates. Nature, 2014, 511, E3-E5.	13.7	63
115	Heated debate on cold weather. Nature Climate Change, 2014, 4, 537-538.	8.1	17
116	Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nature Geoscience, 2014, 7, 651-656.	5.4	123
117	Attribution of extreme weather to anthropogenic greenhouse gas emissions: Sensitivity to spatial and temporal scales. Geophysical Research Letters, 2014, 41, 2150-2155.	1.5	41
118	The asymmetry of the climate system's response to solar forcing changes and its implications for geoengineering scenarios. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5171-5184.	1.2	17
119	The potential of pattern scaling for projecting temperature-related extreme indices. International Journal of Climatology, 2014, 34, 18-26.	1.5	16
120	Detection of spatially aggregated changes in temperature and precipitation extremes. Geophysical Research Letters, 2014, 41, 547-554.	1.5	217
121	Assessing the Reliability of Climate Models, CMIP5. , 2013, , 237-248.		5
122	Climate model genealogy: Generation CMIP5 and how we got there. Geophysical Research Letters, 2013, 40, 1194-1199.	1.5	670
123	Energy budget constraints on climate response. Nature Geoscience, 2013, 6, 415-416.	5.4	270
124	Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 2013, 6, 608-612.	5.4	324
125	Improved simulation of extreme precipitation in a highâ€resolution atmosphere model. Geophysical Research Letters, 2013, 40, 5803-5808.	1.5	92
126	Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 2013, 3, 369-373.	8.1	1,211

#	Article	IF	CITATIONS
127	Predictor Screening, Calibration, and Observational Constraints in Climate Model Ensembles: An Illustration Using Climate Sensitivity. Journal of Climate, 2013, 26, 887-898.	1.2	28
128	The sensitivity of the modeled energy budget and hydrological cycle to CO ₂ and solar forcing. Earth System Dynamics, 2013, 4, 253-266.	2.7	14
129	Robust spatially aggregated projections of climate extremes. Nature Climate Change, 2013, 3, 1033-1038.	8.1	429
130	Robust projections of combined humidity and temperature extremes. Nature Climate Change, 2013, 3, 126-130.	8.1	206
131	Climate models without preindustrial volcanic forcing underestimate historical ocean thermal expansion. Geophysical Research Letters, 2013, 40, 1600-1604.	1.5	54
132	Impact of a Reduced Arctic Sea Ice Cover on Ocean and Atmospheric Properties. Journal of Climate, 2012, 25, 307-319.	1.2	15
133	Comments on "Why Hasn't Earth Warmed as Much as Expected?― Journal of Climate, 2012, 25, 2192-21	992	5
134	Communication of the role of natural variability in future North American climate. Nature Climate Change, 2012, 2, 775-779.	8.1	671
135	Anthropogenic and natural warming inferred from changes in Earth's energy balance. Nature Geoscience, 2012, 5, 31-36.	5.4	134
136	Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Climate Change, 2012, 2, 248-253.	8.1	632
137	Evidence for external forcing on 20thâ€century climate from combined oceanâ€atmosphere warming patterns. Geophysical Research Letters, 2012, 39, .	1.5	8
138	Making sense of palaeoclimate sensitivity. Nature, 2012, 491, 683-691.	13.7	247
139	Perceptible changes in regional precipitation in a future climate. Geophysical Research Letters, 2012, 39, .	1.5	55
140	September Arctic sea ice predicted to disappear near 2°C global warming above present. Journal of Geophysical Research, 2012, 117, .	3.3	113
141	On the interpretation of constrained climate model ensembles. Geophysical Research Letters, 2012, 39, .	1.5	71
142	Climate Change Projections: Characterizing Uncertainty Using Climate Models. , 2012, , 235-259.		1
143	Von nichts kommt nichts. Physik in Unserer Zeit, 2012, 43, 107-107.	0.0	0
144	Climate change projections for Switzerland based on a Bayesian multiâ€model approach. International Journal of Climatology, 2012, 32, 2348-2371.	1.5	74

#	Article	IF	CITATIONS
145	Analyzing precipitation projections: A comparison of different approaches to climate model evaluation. Journal of Geophysical Research, 2011, 116, .	3.3	77
146	Climate model genealogy. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	276
147	Influence of subtropical and polar sea-surface temperature anomalies on temperatures in Eurasia. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	15
148	Mapping model agreement on future climate projections. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	197
149	Long-term climate implications of twenty-first century options for carbon dioxide emissionÂmitigation. Nature Climate Change, 2011, 1, 457-461.	8.1	87
150	Energy policies avoiding a tipping point in the climate system. Energy Policy, 2011, 39, 334-348.	4.2	21
151	The response of the climate system to very high greenhouse gas emission scenarios. Environmental Research Letters, 2011, 6, 034005.	2.2	13
152	Early onset of significant local warming in low latitude countries. Environmental Research Letters, 2011, 6, 034009.	2.2	211
153	Constraints on Climate Sensitivity from Radiation Patterns in Climate Models. Journal of Climate, 2011, 24, 1034-1052.	1.2	40
154	Spatial-Scale Dependence of Climate Model Performance in the CMIP3 Ensemble. Journal of Climate, 2011, 24, 2680-2692.	1.2	99
155	Ocean Heat Transport as a Cause for Model Uncertainty in Projected Arctic Warming. Journal of Climate, 2011, 24, 1451-1460.	1.2	76
156	Regional climate change patterns identified by cluster analysis. Climate Dynamics, 2010, 35, 587-600.	1.7	68
157	Uncertainty and risk in climate projections for the 21st century: comparing mitigation to non-intervention scenarios. Climatic Change, 2010, 103, 399-422.	1.7	17
158	Future climate resources for tourism in Europe based on the daily Tourism Climatic Index. Climatic Change, 2010, 103, 363-381.	1.7	107
159	The end of model democracy?. Climatic Change, 2010, 102, 395-404.	1.7	417
160	Persistence of climate changes due to a range of greenhouse gases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18354-18359.	3.3	144
161	Risks of Model Weighting in Multimodel Climate Projections. Journal of Climate, 2010, 23, 4175-4191.	1.2	306
162	Consistency of global satelliteâ€derived aerosol and cloud data sets with recent brightening observations. Geophysical Research Letters, 2010, 37, .	1.5	49

#	Article	IF	CITATIONS
163	What caused Earth's temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews, 2010, 29, 129-145.	1.4	143
164	Challenges in Combining Projections from Multiple Climate Models. Journal of Climate, 2010, 23, 2739-2758.	1.2	974
165	Climate Models and Their Projections of Future Changes. Advances in Global Change Research, 2010, , 31-56.	1.6	5
166	The exit strategy. Nature Climate Change, 2009, 1, 56-58.	8.1	24
167	Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature, 2009, 458, 1158-1162.	13.7	2,245
168	A Smoothing Algorithm for Estimating Stochastic, Continuous Time Model Parameters and its Application to a Simple Climate Model. Journal of the Royal Statistical Society Series C: Applied Statistics, 2009, 58, 679-704.	0.5	19
169	Beijing Olympics as an aerosol field experiment. Geophysical Research Letters, 2009, 36, .	1.5	61
170	Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1704-1709.	3.3	2,294
171	How much climate change can be avoided by mitigation?. Geophysical Research Letters, 2009, 36, .	1.5	36
172	Modeled seasonality of glacial abrupt climate events. Climate Dynamics, 2008, 31, 633-645.	1.7	46
173	Local eigenvalue analysis of CMIP3 climate model errors. Tellus, Series A: Dynamic Meteorology and Oceanography, 2008, 60, 992-1000.	0.8	58
174	Hotter or not? Should we believe model predictions of future climate change?. Significance, 2008, 5, 159-162.	0.3	6
175	The equilibrium sensitivity of the Earth's temperature to radiation changes. Nature Geoscience, 2008, 1, 735-743.	5.4	445
176	Constraints on the transient climate response from observed global temperature and ocean heat uptake. Geophysical Research Letters, 2008, 35, .	1.5	36
177	Comment on "Heat capacity, time constant, and sensitivity of Earth's climate system―by S. E. Schwartz. Journal of Geophysical Research, 2008, 113, .	3.3	48
178	A Review of Uncertainties in Global Temperature Projections over the Twenty-First Century. Journal of Climate, 2008, 21, 2651-2663.	1.2	209
179	Why are climate models reproducing the observed global surface warming so well?. Geophysical Research Letters, 2008, 35, .	1.5	84
180	The Impacts of the Oceans on Climate Change. , 2008, , .		1

11

ΓΕΤΟ ΚΝUTTI

#	Article	IF	CITATIONS
181	Long-Term Climate Commitments Projected with Climate–Carbon Cycle Models. Journal of Climate, 2008, 21, 2721-2751.	1.2	232
182	Constraints on Model Response to Greenhouse Gas Forcing and the Role of Subgrid-Scale Processes. Journal of Climate, 2008, 21, 2384-2400.	1.2	57
183	Spatial Analysis to Quantify Numerical Model Bias and Dependence. Journal of the American Statistical Association, 2008, 103, 934-947.	1.8	183
184	Should we believe model predictions of future climate change?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 4647-4664.	1.6	217
185	Robust Bayesian Uncertainty Analysis of Climate System Properties Using Markov Chain Monte Carlo Methods. Journal of Climate, 2007, 20, 1239-1254.	1.2	78
186	Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophysical Research Letters, 2007, 34, .	1.5	56
187	The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 2053-2075.	1.6	1,309
188	Oceanic processes as potential trigger and amplifying mechanisms for Heinrich events. Paleoceanography, 2006, 21, n/a-n/a.	3.0	79
189	Constraining Climate Sensitivity from the Seasonal Cycle in Surface Temperature. Journal of Climate, 2006, 19, 4224-4233.	1.2	158
190	The coupling of optimal economic growth and climate dynamics. Climatic Change, 2006, 79, 103-119.	1.7	16
191	The coupling of optimal economic growth and climate dynamics. , 2006, , 103-119.		1
192	Simulated changes in vegetation distribution, land carbon storage, and atmospheric CO2 in response to a collapse of the North Atlantic thermohaline circulation. Climate Dynamics, 2005, 25, 689-708.	1.7	70
193	Probabilistic climate change projections for CO2stabilization profiles. Geophysical Research Letters, 2005, 32, .	1.5	53
194	Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters, 2005, 32,	1.5	344
195	Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature, 2004, 430, 851-856.	13.7	265
196	Probabilistic climate change projections using neural networks. Climate Dynamics, 2003, 21, 257-272.	1.7	185
197	ATMOSPHERIC SCIENCE: Climate Forcing by Aerosol–a Hazy Picture. Science, 2003, 300, 1103-1104.	6.0	323
198	Limited Predictability of the Future Thermohaline Circulation Close to an Instability Threshold. Journal of Climate, 2002, 15, 179-186.	1.2	55

ΓΕΤΟ ΚΝΟΤΤΙ

#	Article	IF	CITATIONS
199	Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature, 2002, 416, 719-723.	13.7	345
200	The Effects of Subgrid-Scale Parameterizations in a Zonally Averaged Ocean Model. Journal of Physical Oceanography, 2000, 30, 2738-2752.	0.7	37
201	Influence of the Thermohaline Circulation on Projected Sea Level Rise. Journal of Climate, 2000, 13, 1997-2001.	1.2	46
202	How has climate responded to natural perturbations?. , 0, , 72-101.		1
203	The Future of the Thermohaline Circulation - a Perspective. Geophysical Monograph Series, 0, , 277-293.	0.1	16