Giorgio Famiglini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1582410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrometry Reviews, 2011, 30, 491-509.	2.8	601
2	Overcoming Matrix Effects in Liquid Chromatographyâ	3.2	228
3	Trace Level Determination of Organophosphorus Pesticides in Water with the New Direct-Electron Ionization LC/MS Interface. Analytical Chemistry, 2002, 74, 3547-3554.	3.2	136
4	Determination of Acidic and Basic/Neutral Pesticides in Water with a New Microliter Flow Rate LC/MS Particle Beam Interface. Analytical Chemistry, 1994, 66, 1416-1423.	3.2	76
5	Organochlorine Pesticides by LCâ~'MS. Analytical Chemistry, 2008, 80, 3445-3449.	3.2	76
6	Advanced Liquid Chromatographyâ^'Mass Spectrometry Interface Based on Electron Ionization. Analytical Chemistry, 2007, 79, 5364-5372.	3.2	60
7	MATRIX EFFECTS IN LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY. Journal of Liquid Chromatography and Related Technologies, 2010, 33, 1067-1081.	O.5	54
8	Variable-Gradient Generator for Micro- and Nano-HPLC. Analytical Chemistry, 2003, 75, 1173-1179.	3.2	50
9	Single-Step LC/MS Method for the Simultaneous Determination of GC-Amenable Organochlorine and LC-Amenable Phenoxy Acidic Pesticides. Analytical Chemistry, 2009, 81, 7373-7378.	3.2	50
10	A simple approach for coupling liquid chromatography and electron ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2002, 13, 265-273.	1.2	48
11	Nano-high-performance liquid chromatography–electron ionization mass spectrometry approach for environmental analysis. Analytica Chimica Acta, 2003, 493, 125-136.	2.6	47
12	New trends in the application of electron ionization to liquid chromatography?mass spectrometry interfacing. Mass Spectrometry Reviews, 2001, 20, 88-104.	2.8	46
13	Electron ionization in LC-MS: recent developments and applications of the direct-El LC-MS interface. Analytical and Bioanalytical Chemistry, 2011, 399, 2683-2693.	1.9	44
14	Directâ€El in LC–MS: Towards a universal detector for smallâ€molecule applications. Mass Spectrometry Reviews, 2011, 30, 1242-1255.	2.8	43
15	Profiling of non-esterified fatty acids in human plasma using liquid chromatography-electron ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2011, 400, 2933-2941.	1.9	38
16	MASS SPECTROMETRY ANALYSIS OF DRUGS OF ABUSE: CHALLENGES AND EMERGING STRATEGIES. Mass Spectrometry Reviews, 2020, 39, 703-744.	2.8	38
17	Determination of aflatoxins in peanut meal by LC/MS with a particle beam interface. Chromatographia, 1995, 40, 411-416.	0.7	36
18	Enhanced detection sensitivity by large volume injection in reversed-phase micro-high-performance liquid chromatography. Journal of Chromatography A, 1996, 742, 69-78.	1.8	36

GIORGIO FAMIGLINI

#	Article	IF	CITATIONS
19	Analysis of Thermally Unstable Compounds by a Liquid Chromatography/Mass Spectrometry Particle Beam Interface with a Modified Ion Source. Analytical Chemistry, 1995, 67, 412-419.	3.2	35
20	Liquid chromatographic–mass spectrometric determination of phenolic compounds using a capillary-scale particle beam interface. Journal of Chromatography A, 1999, 855, 515-527.	1.8	35
21	Atmospheric Pressure Vaporization Mechanism for Coupling a Liquid Phase with Electron Ionization Mass Spectrometry. Analytical Chemistry, 2017, 89, 2049-2056.	3.2	35
22	Large volume injection of acidic pesticides by reversed-phase micro high-performance liquid chromatography. Journal of Chromatography A, 1997, 768, 215-222.	1.8	33
23	Microextraction by packed sorbent (MEPS)-UHPLC-UV: A simple and efficient method for the determination of five benzodiazepines in an alcoholic beverage. Journal of Pharmaceutical and Biomedical Analysis, 2016, 125, 48-53.	1.4	33
24	Evaluation of a liquid electron ionization liquid chromatography–mass spectrometry interface. Journal of Chromatography A, 2019, 1591, 120-130.	1.8	33
25	The Rapid Measurement of Benzodiazepines in a Milk-Based Alcoholic Beverage Using QuEChERS Extraction and GC-MS Analysis. Journal of Analytical Toxicology, 2015, 39, 306-312.	1.7	32
26	Electron capture ionization of explosives with a microflow rate particle beam interface. Journal of the American Society for Mass Spectrometry, 1996, 7, 753-758.	1.2	31
27	Capillary-scale particle-beam liquid chromatography/mass spectrometry interface: Can electron ionization sustain the competition?. Journal of the American Society for Mass Spectrometry, 1998, 9, 993-1001.	1.2	31
28	An Efficient Liquid Chromatographyâ^'Mass Spectrometry Interface for the Generation of Electron Ionization Spectra. Analytical Chemistry, 2000, 72, 3841-3846.	3.2	31
29	Determination of Endocrine Disrupting Compounds in Marine Water by Nanoliquid Chromatography/Direct-Electron Ionization Mass Spectrometry. Analytical Chemistry, 2005, 77, 7654-7661.	3.2	30
30	Generation of split-flow micro-gradients for capillary HPLC. Chromatographia, 1994, 39, 279-284.	0.7	29
31	Evaluation of the Performance of a Microflow Rate LC/MS Particle Beam Interface. Analytical Chemistry, 1994, 66, 3970-3976.	3.2	29
32	New Approach for the Analysis of Acidic Pesticides in Water by LC/MS with a Particle Beam Interface. Environmental Science & Technology, 1995, 29, 2295-2300.	4.6	29
33	Liquid chromatography-electron ionization mass spectrometry: Fields of application and evaluation of the performance of a Direct-El interface. Mass Spectrometry Reviews, 2005, 24, 978-989.	2.8	29
34	Determination of benzodiazepines in beverages using green extraction methods and capillary HPLC-UV detection. Journal of Pharmaceutical and Biomedical Analysis, 2018, 154, 492-500.	1.4	28
35	Use of Nonvolatile Buffers in Liquid Chromatography/Mass Spectrometry:Â Advantages of Capillary-Scale Particle Beam Interfacing. Analytical Chemistry, 1997, 69, 5136-5141.	3.2	27
36	Fate of Enrofloxacin in Swine Sewage. Journal of Agricultural and Food Chemistry, 2004, 52, 3473-3477.	2.4	26

GIORGIO FAMIGLINI

#	Article	IF	CITATIONS
37	Analysis of coumarins by micro high-performance liquid chromatography-mass spectrometry with a particle beam interface. Journal of the American Society for Mass Spectrometry, 1995, 6, 132-139.	1.2	25
38	Rapid LCâ€MS method for the detection of common fragrances in personal care products without sample preparation. Electrophoresis, 2014, 35, 1339-1345.	1.3	25
39	The history of electron ionization in LC-MS, from the early days to modern technologies: A review. Analytica Chimica Acta, 2021, 1167, 338350.	2.6	25
40	Liquid chromatography-electron ionization tandem mass spectrometry with the Direct-El interface in the fast determination of diazepam and flunitrazepam in alcoholic beverages. Electrophoresis, 2016, 37, 1048-1054.	1.3	24
41	Micro-SPE Method for Sample Introduction in Capillary HPLC/MS. Analytical Chemistry, 2001, 73, 298-302.	3.2	22
42	Study on the oligosaccharides composition of the water-soluble fraction of marine mucilage by electrospray tandem mass spectrometry. Water Research, 2007, 41, 2911-2920.	5.3	19
43	Application of nano-FIA-Direct-EI-MS to determine diethylene glycol in produced formation water discharges and seawater samples. Chemosphere, 2007, 69, 554-560.	4.2	18
44	A new liquid chromatography–mass spectrometry approach for generic screening and quantitation of potential genotoxic alkylation compounds without derivatization. Journal of Chromatography A, 2012, 1255, 286-290.	1.8	18
45	Condensed Phase Membrane Introduction Mass Spectrometry with Direct Electron Ionization: On-line Measurement of PAHs in Complex Aqueous Samples. Journal of the American Society for Mass Spectrometry, 2016, 27, 301-308.	1.2	17
46	Determination of selected endocrine disrupting compounds in human fetal and newborn tissues by GC-MS. Analytical and Bioanalytical Chemistry, 2014, 406, 2779-2788.	1.9	16
47	Peer Reviewed: Electron Ionization for LC/MS. Analytical Chemistry, 2003, 75, 496 A-503 A.	3.2	15
48	Application of Liquid Chromatography-Direct-Electron Ionization-MS in an in Vitro Dermal Absorption Study: Quantitative Determination of <i>trans</i> -Cinnamaldehyde. Analytical Chemistry, 2011, 83, 8537-8542.	3.2	15
49	Mass Spectrometry Based Approach for Organic Synthesis Monitoring. Analytical Chemistry, 2019, 91, 11916-11922.	3.2	14
50	Direct Coupling of Bio-SPME to Liquid Electron Ionization-MS/MS via a Modified Microfluidic Open Interface. Journal of the American Society for Mass Spectrometry, 2021, 32, 262-269.	1.2	14
51	Simultaneous Determination of Acidic and Basic-Neutral Pesticides in Water at ppt Concentration Level by Ion-Interaction Micro-HPLC/MS. Environmental Science & Technology, 1999, 33, 3905-3910.	4.6	13
52	Flow injection of liquid samples to a mass spectrometer with ionization under vacuum conditions: a combined ion source for single-photon and electron impact ionization. Analytical and Bioanalytical Chemistry, 2013, 405, 6953-6957.	1.9	12
53	Boosting the Detection Potential of Liquid Chromatography-Electron Ionization Mass Spectrometry Using a Ceramic Coated Ion Source. Journal of the American Society for Mass Spectrometry, 2016, 27, 153-160.	1.2	12
54	Rapid, hydrolysis-free, dilute-and-shoot method for the determination of buprenorphine, norbuprenorphine and their glucuronides in urine samples using UHPLC-MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2019, 166, 236-243.	1.4	11

#	Article	IF	CITATIONS
55	A Fast and Effective Method for Packing Nano-LC Columns with Solid-Core Nano Particles Based on the Synergic Effect of Temperature, Slurry Composition, Sonication and Pressure. Chromatographia, 2013, 76, 1079-1086.	0.7	10
56	Adsorption of Pure and Mixed Solvent Solutions of Spin Probes onto Stationary Phases. Journal of Physical Chemistry B, 2006, 110, 10421-10429.	1.2	9
57	Near-field dispersion of produced formation water (PFW) in the Adriatic Sea: An integrated numerical–chemical approach. Marine Environmental Research, 2008, 65, 325-337.	1.1	9
58	Electron Ionization LC-MS. Comprehensive Analytical Chemistry, 2018, 79, 1-28.	0.7	9
59	Determination of Natural Pyrethrins by Liquid Chromatographyâ€Electron Ionisationâ€Mass Spectrometry. Phytochemical Analysis, 2012, 23, 191-196.	1.2	7
60	Inâ€depth performance investigation of a nanoâ€LC gradient generator. Electrophoresis, 2012, 33, 575-582.	1.3	7
61	Comparison of Solid-Phase Extraction and Micro-Solid-Phase Extraction for Liquid Chromatography/Mass Spectrometry Analysis of Pesticides in Water Samples. Journal of AOAC INTERNATIONAL, 2003, 86, 941-946.	0.7	6
62	Temperature effects on nanoâ€ <scp>LC</scp> column packing technology. Journal of Separation Science, 2012, 35, 1589-1595.	1.3	6
63	Tyrosol and Hydroxytyrosol Determination in Extra Virgin Olive Oil with Direct Liquid Electron Ionization-Tandem Mass Spectrometry. Separations, 2021, 8, 173.	1.1	6
64	Study on the maltooligosaccharide composition of mucilage samples collected along the northern Adriatic coast. Carbohydrate Research, 2009, 344, 120-126.	1.1	5
65	Microfluidic water-assisted trap focusing method for ultra-large volume injection in reversed-phase nano-liquid chromatography coupled to electron ionization tandem-mass spectrometry. Journal of Chromatography A, 2020, 1627, 461421.	1.8	5
66	LC–ESI-MS determination of diethylene glycol pollution in sea water samples collected around gas extraction platform plants. Talanta, 2009, 80, 257-262.	2.9	4
67	Liquid Chromatography–Electron Capture Negative Ionization–Tandem Mass Spectrometry Detection of Pesticides in a Commercial Formulation. Journal of the American Society for Mass Spectrometry, 2022, 33, 141-148.	1.2	4
68	Occurrence of specific environmental risk factors in brain tissues of sudden infant death and sudden intrauterine unexpected death victims assessed with gas chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2015, 407, 2463-2472.	1.9	2
69	Maltooligosaccharides in the northwestern Adriatic Sea. Chemistry and Ecology, 2016, 32, 88-102.	0.6	2
70	The effect of diethylene glycol on pollution from offshore gas platforms. Environmental Chemistry, 2018, 15, 74.	0.7	1
71	New liquid chromatography/electron ionization mass spectrometry methods in water analysis. Annali Di Chimica, 2002, 92, 623-36.	0.6	0