

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1582342/publications.pdf Version: 2024-02-01

		18482	39675
177	11,174	62	94
papers	citations	h-index	g-index
177	177	177	6228
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent advances in the utilization of tea active ingredients to regulate sleep through neuroendocrine pathway, immune system and intestinal microbiota. Critical Reviews in Food Science and Nutrition, 2023, 63, 7598-7626.	10.3	21
2	A comprehensive review on the prevention and regulation of Alzheimer's disease by tea and its active ingredients. Critical Reviews in Food Science and Nutrition, 2023, 63, 10560-10584.	10.3	13
3	Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments. Critical Reviews in Food Science and Nutrition, 2023, 63, 11522-11544.	10.3	10
4	Extraction methods, physiological activities and high value applications of tea residue and its active components: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 12150-12168.	10.3	10
5	Improvement of stability and bioaccessibility of β-carotene by curcumin in pea protein isolate-based complexes-stabilized emulsions: Effect of protein complexation by pectin and small molecular surfactants. Food Chemistry, 2022, 367, 130726.	8.2	31
6	Co-encapsulation of curcumin and β-carotene in Pickering emulsions stabilized by complex nanoparticles: Effects of microfluidization and thermal treatment. Food Hydrocolloids, 2022, 122, 107064.	10.7	70
7	Comparison of quercetin and rutin inhibitory influence on Tartary buckwheat starch digestion in vitro and their differences in binding sites with the digestive enzyme. Food Chemistry, 2022, 367, 130762.	8.2	33
8	Interfacial properties and antioxidant capacity of pickering emulsions stabilized by high methoxyl pectin-surfactant-pea protein isolate-curcumin complexes: Impact of different types of surfactants. LWT - Food Science and Technology, 2022, 153, 112453.	5.2	14
9	Characterization and antioxidant properties of chitosan film incorporated with modified silica nanoparticles as an active food packaging. Food Chemistry, 2022, 373, 131414.	8.2	68
10	W/O emulsions featuring ethylcellulose structuring in the water phase, interface and oil phase for multiple delivery. Carbohydrate Polymers, 2022, 283, 119158.	10.2	21
11	Corn peptides improved obesity-induced non-alcoholic fatty liver disease through relieving lipid metabolism, insulin resistance and oxidative stress. Food and Function, 2022, 13, 5782-5793.	4.6	11
12	The Whitening, Moisturizing, Anti-aging Activities, and Skincare Evaluation of Selenium-Enriched Mung Bean Fermentation Broth. Frontiers in Nutrition, 2022, 9, 837168.	3.7	7
13	Cyclodextrin-based metal–organic framework nanoparticles as superior carriers for curcumin: Study of encapsulation mechanism, solubility, release kinetics, and antioxidative stability. Food Chemistry, 2022, 383, 132605.	8.2	37
14	Structural Modification of O/W Bigels by Glycerol Monostearate for Improved Co-Delivery of Curcumin and Epigallocatechin Gallate. ACS Food Science & Technology, 2022, 2, 975-983.	2.7	15
15	Thermal-induced impact on physicochemical property and bioaccessibility of β-carotene in aqueous suspensions fabricated by wet-milling approach. Food Control, 2022, 141, 109155.	5.5	7
16	Fabrication and characterization of curcumin-loaded pea protein isolate-surfactant complexes at neutral pH. Food Hydrocolloids, 2021, 111, 106214.	10.7	55
17	Diverse effects of rutin and quercetin on the pasting, rheological and structural properties of Tartary buckwheat starch. Food Chemistry, 2021, 335, 127556.	8.2	33
18	Electrostatic deposition of polysaccharide onto soft protein colloidal particles: Enhanced rigidity and potential application as Pickering emulsifiers. Food Hydrocolloids, 2021, 110, 106147.	10.7	45

#	Article	IF	CITATIONS
19	Fabrication, structural characterization and functional attributes of polysaccharide-surfactant-protein ternary complexes for delivery of curcumin. Food Chemistry, 2021, 337, 128019.	8.2	31
20	Formation mechanism and environmental stability of whey protein isolate-zein core-shell complex nanoparticles using the pH-shifting method. LWT - Food Science and Technology, 2021, 139, 110605.	5.2	37
21	High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin: enhanced survivability and controlled release. Food and Function, 2021, 12, 70-82.	4.6	53
22	Formulated protein-polysaccharide-surfactant ternary complexes for co-encapsulation of curcumin and resveratrol: Characterization, stability and in vitro digestibility. Food Hydrocolloids, 2021, 111, 106265.	10.7	39
23	Development of β-carotene loaded oil-in-water emulsions using mixed biopolymer–particle–surfactant interfaces. Food and Function, 2021, 12, 3246-3265.	4.6	11
24	Development of curcumin loaded core–shell zein microparticles stabilized by cellulose nanocrystals and whey protein microgels through interparticle interactions. Food and Function, 2021, 12, 6936-6949.	4.6	12
25	Stability, Interfacial Structure, and Gastrointestinal Digestion of β-Carotene-Loaded Pickering Emulsions Co-stabilized by Particles, a Biopolymer, and a Surfactant. Journal of Agricultural and Food Chemistry, 2021, 69, 1619-1636.	5.2	42
26	Enhanced stability and controlled gastrointestinal digestion of β-carotene loaded Pickering emulsions with particle–particle complex interfaces. Food and Function, 2021, 12, 10842-10861.	4.6	11
27	Effects of microfluidization and thermal treatment on the characterization and digestion of curcumin loaded protein–polysaccharide–tea saponin complex nanoparticles. Food and Function, 2021, 12, 1192-1206.	4.6	27
28	Assembly of propylene glycol alginate/β-lactoglobulin composite hydrogels induced by ethanol for co-delivery of probiotics and curcumin. Carbohydrate Polymers, 2021, 254, 117446.	10.2	41
29	Fixed time output feedback containment for uncertain nonlinear multiagent systems with switching communication topologies. ISA Transactions, 2021, 111, 82-95.	5.7	13
30	Novel γ-cyclodextrin-metal–organic frameworks for encapsulation of curcumin with improved loading capacity, physicochemical stability and controlled release properties. Food Chemistry, 2021, 347, 128978.	8.2	53
31	Emulsion gels with different proteins at the interface: Structures and delivery functionality. Food Hydrocolloids, 2021, 116, 106637.	10.7	59
32	Fabrication, characterization, stability and re-dispersibility of curcumin-loaded gliadin-rhamnolipid composite nanoparticles using pH-driven method. Food Hydrocolloids, 2021, 118, 106758.	10.7	66
33	Zein Colloidal Particles and Cellulose Nanocrystals Synergistic Stabilization of Pickering Emulsions for Delivery of β-Carotene. Journal of Agricultural and Food Chemistry, 2021, 69, 12278-12294.	5.2	36
34	Structural design of zein-cellulose nanocrystals core–shell microparticles for delivery of curcumin. Food Chemistry, 2021, 357, 129849.	8.2	47
35	Lycopene-loaded bilayer emulsions stabilized by whey protein isolate and chitosan. LWT - Food Science and Technology, 2021, 151, 112122.	5.2	18
36	Impact of trehalose on physicochemical stability of β-carotene high loaded microcapsules fabricated by wet-milling coupled with spray drying. Food Hydrocolloids, 2021, 121, 106977.	10.7	32

Yang Wei

#	Article	IF	CITATIONS
37	Comparisons of random forest and stochastic gradient treeboost algorithms for mapping soil electrical conductivity with multiple subsets using Landsat OLI and DEM/GIS-based data at a type oasis in Xinjiang, China. European Journal of Remote Sensing, 2021, 54, 158-181.	3.5	6
38	Structural characterization of a pure polysaccharide from Bletilla striata tubers and its protective effect against H2O2-induced injury fibroblast cells. International Journal of Biological Macromolecules, 2021, 193, 2281-2289.	7.5	18
39	Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Critical Reviews in Food Science and Nutrition, 2020, 60, 1651-1666.	10.3	113
40	Co-delivery of curcumin and piperine in zein-carrageenan core-shell nanoparticles: Formation, structure, stability and in vitro gastrointestinal digestion. Food Hydrocolloids, 2020, 99, 105334.	10.7	190
41	The stabilization and release performances of curcumin-loaded liposomes coated by high and low molecular weight chitosan. Food Hydrocolloids, 2020, 99, 105355.	10.7	99
42	Curcumin-loaded pea protein isolate-high methoxyl pectin complexes induced by calcium ions: Characterization, stability and in vitro digestibility. Food Hydrocolloids, 2020, 98, 105284.	10.7	54
43	Characterization and formation mechanism of lutein pickering emulsion gels stabilized by β-lactoglobulin-gum arabic composite colloidal nanoparticles. Food Hydrocolloids, 2020, 98, 105276.	10.7	48
44	Core-shell nanoparticles for co-encapsulation of coenzyme Q10 and piperine: Surface engineering of hydrogel shell around protein core. Food Hydrocolloids, 2020, 103, 105651.	10.7	43
45	Novel colloidal particles and natural small molecular surfactants co-stabilized Pickering emulsions with hierarchical interfacial structure: Enhanced stability and controllable lipolysis. Journal of Colloid and Interface Science, 2020, 563, 291-307.	9.4	72
46	Surfactant addition to modify the structures of ethylcellulose oleogels for higher solubility and stability of curcumin. International Journal of Biological Macromolecules, 2020, 165, 2286-2294.	7.5	45
47	The construction of resveratrol-loaded protein–polysaccharide–tea saponin complex nanoparticles for controlling physicochemical stability and <i>in vitro</i> digestion. Food and Function, 2020, 11, 9973-9983.	4.6	33
48	Enhanced Physicochemical Stability of β-Carotene Emulsions Stabilized by β-Lactoglobulinâ `'Ferulic Acidâ `'Chitosan Ternary Conjugate. Journal of Agricultural and Food Chemistry, 2020, 68, 8404-8412.	5.2	12
49	Influence of interfacial compositions on the microstructure, physiochemical stability, lipid digestion and β-carotene bioaccessibility of Pickering emulsions. Food Hydrocolloids, 2020, 104, 105738.	10.7	96
50	Effect of chitosan molecular weight on zein-chitosan nanocomplexes: Formation, characterization, and the delivery of quercetagetin. International Journal of Biological Macromolecules, 2020, 164, 2215-2223.	7.5	45
51	Impact of microfluidization and thermal treatment on the structure, stability and in vitro digestion of curcumin loaded zein-propylene glycol alginate complex nanoparticles. Food Research International, 2020, 138, 109817.	6.2	39
52	Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chemistry, 2020, 326, 126973.	8.2	83
53	Pickering emulsion gels stabilized by novel complex particles of high-pressure-induced WPI gel and chitosan: Fabrication, characterization and encapsulation. Food Hydrocolloids, 2020, 108, 105992.	10.7	82
54	Fabrication of multilayer structural microparticles for co-encapsulating coenzyme Q10 and piperine: Effect of the encapsulation location and interface thickness. Food Hydrocolloids, 2020, 109, 106090.	10.7	30

#	Article	IF	CITATIONS
55	Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the pH-Driven Method. Journal of Agricultural and Food Chemistry, 2020, 68, 7103-7111.	5.2	48
56	Entrapment of curcumin in whey protein isolate and zein composite nanoparticles using pH-driven method. Food Hydrocolloids, 2020, 106, 105839.	10.7	135
57	Fabrication, characterization, physicochemical stability of zein-chitosan nanocomplex for co-encapsulating curcumin and resveratrol. Carbohydrate Polymers, 2020, 236, 116090.	10.2	104
58	Effect of Ultra-high temperature processing on the physicochemical properties and antibacterial activity of d-limonene emulsions stabilized by β-lactoglobulin/Gum arabic bilayer membranes. Food Chemistry, 2020, 332, 127391.	8.2	8
59	Production and characterization of pea protein isolate-pectin complexes for delivery of curcumin: Effect of esterified degree of pectin. Food Hydrocolloids, 2020, 105, 105777.	10.7	73
60	Fabrication, characterization and in vitro digestion of food grade complex nanoparticles for co-delivery of resveratrol and coenzyme Q10. Food Hydrocolloids, 2020, 105, 105791.	10.7	63
61	Protein-neutral polysaccharide nano- and micro-biopolymer complexes fabricated by lactoferrin and oat β-glucan: Structural characteristics and molecular interaction mechanisms. Food Research International, 2020, 132, 109111.	6.2	43
62	Fabrication, Physicochemical Stability, and Microstructure of Coenzyme Q10 Pickering Emulsions Stabilized by Resveratrol-Loaded Composite Nanoparticles. Journal of Agricultural and Food Chemistry, 2020, 68, 1405-1418.	5.2	41
63	Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: Characterization and encapsulation of curcumin. Food Research International, 2020, 132, 109032.	6.2	76
64	Influence of calcium ions on the stability, microstructure and in vitro digestion fate of zein-propylene glycol alginate-tea saponin ternary complex particles for the delivery of resveratrol. Food Hydrocolloids, 2020, 106, 105886.	10.7	55
65	Development of high methoxyl pectin-surfactant-pea protein isolate ternary complexes: Fabrication, characterization and delivery of resveratrol. Food Chemistry, 2020, 321, 126706.	8.2	30
66	Development of Emulsion Gels for the Delivery of Functional Food Ingredients: from Structure to Functionality. Food Engineering Reviews, 2019, 11, 245-258.	5.9	105
67	Core–Shell Biopolymer Nanoparticles for Co-Delivery of Curcumin and Piperine: Sequential Electrostatic Deposition of Hyaluronic Acid and Chitosan Shells on the Zein Core. ACS Applied Materials & Interfaces, 2019, 11, 38103-38115.	8.0	92
68	Structural and Functional Characterization of Laccase-Induced β-Lactoglobulin–Ferulic Acid–Chitosan Ternary Conjugates. Journal of Agricultural and Food Chemistry, 2019, 67, 12054-12060.	5.2	21
69	Effect of the Solid Fat Content on Properties of Emulsion Gels and Stability of β-Carotene. Journal of Agricultural and Food Chemistry, 2019, 67, 6466-6475.	5.2	39
70	Effect of sodium tripolyphosphate incorporation on physical, structural, morphological and stability characteristics of zein and gliadin nanoparticles. International Journal of Biological Macromolecules, 2019, 136, 653-660.	7.5	35
71	Effect of β-sitosterol on the curcumin-loaded liposomes: Vesicle characteristics, physicochemical stability, in vitro release and bioavailability. Food Chemistry, 2019, 293, 92-102.	8.2	92
72	Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion. Food Hydrocolloids, 2019, 95, 336-348.	10.7	148

#	Article	IF	CITATIONS
73	Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method. Food Hydrocolloids, 2019, 93, 342-350.	10.7	126
74	Enhanced stability, structural characterization and simulated gastrointestinal digestion of coenzyme Q10 loaded ternary nanoparticles. Food Hydrocolloids, 2019, 94, 333-344.	10.7	59
75	Fabrication and Characterization of Layer-by-Layer Composite Nanoparticles Based on Zein and Hyaluronic Acid for Codelivery of Curcumin and Quercetagetin. ACS Applied Materials & Interfaces, 2019, 11, 16922-16933.	8.0	138
76	Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Glycol Alginate, Part 1: Fabrication and Characterization. Journal of Agricultural and Food Chemistry, 2019, 67, 1197-1208.	5.2	58
77	Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Glycol Alginate. 2. Influence of Environmental Stresses on Stability and Rheological Properties. Journal of Agricultural and Food Chemistry, 2019, 67, 1209-1221.	5.2	56
78	Preparation, characterization and stability of pea protein isolate and propylene glycol alginate soluble complexes. LWT - Food Science and Technology, 2019, 101, 476-482.	5.2	28
79	Development of stable high internal phase emulsions by pickering stabilization: Utilization of zein-propylene glycol alginate-rhamnolipid complex particles as colloidal emulsifiers. Food Chemistry, 2019, 275, 246-254.	8.2	136
80	Formation of soy protein isolate-carrageenan complex coacervates for improved viability of Bifidobacterium longum during pasteurization and in vitro digestion. Food Chemistry, 2019, 276, 307-314.	8.2	48
81	Zein-hyaluronic acid binary complex as a delivery vehicle of quercetagetin: Fabrication, structural characterization, physicochemical stability and in vitro release property. Food Chemistry, 2019, 276, 322-332.	8.2	103
82	The effect of sterol derivatives on properties of soybean and egg yolk lecithin liposomes: Stability, structure and membrane characteristics. Food Research International, 2018, 109, 24-34.	6.2	75
83	Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type. Food Chemistry, 2018, 258, 321-330.	8.2	52
84	Ethanol-induced composite hydrogel based on propylene glycol alginate and zein: Formation, characterization and application. Food Chemistry, 2018, 255, 390-398.	8.2	50
85	Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocolloids, 2018, 79, 450-461.	10.7	150
86	Structure, physicochemical stability and inÂvitro simulated gastrointestinal digestion properties of β-carotene loaded zein-propylene glycol alginate composite nanoparticles fabricated by emulsification-evaporation method. Food Hydrocolloids, 2018, 81, 149-158.	10.7	158
87	Stabilization and Rheology of Concentrated Emulsions Using the Natural Emulsifiers Quillaja Saponins and Rhamnolipids. Journal of Agricultural and Food Chemistry, 2018, 66, 3922-3929.	5.2	64
88	Emulsion design for the delivery of β-carotene in complex food systems. Critical Reviews in Food Science and Nutrition, 2018, 58, 770-784.	10.3	85
89	Enhancing physicochemical properties of emulsions by heteroaggregation of oppositely charged lactoferrin coated lutein droplets and whey protein isolate coated DHA droplets. Food Chemistry, 2018, 239, 75-85.	8.2	27
90	Evaluation of non-covalent ternary aggregates of lactoferrin, high methylated pectin, EGCG in stabilizing β-carotene emulsions. Food Chemistry, 2018, 240, 1063-1071.	8.2	47

#	Article	lF	CITATIONS
91	Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes. Food Research International, 2018, 103, 1-7.	6.2	68
92	Characterization of chitosan-ferulic acid conjugates and their application in the design of β-carotene bilayer emulsions with propylene glycol alginate. Food Hydrocolloids, 2018, 80, 281-291.	10.7	55
93	Fabrication of zein and rhamnolipid complex nanoparticles to enhance the stability and inÂvitro release of curcumin. Food Hydrocolloids, 2018, 77, 617-628.	10.7	207
94	Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles. Food Hydrocolloids, 2018, 74, 239-248.	10.7	295
95	Effect of Different Microstructures on the Performance of Air-Cooled Forging Steel 46MnVS5 Fracture Splitting Connecting Rod. Materials Science Forum, 2018, 941, 358-363.	0.3	2
96	Effect of molecular weight of hyaluronan on zein-based nanoparticles: Fabrication, structural characterization and delivery of curcumin. Carbohydrate Polymers, 2018, 201, 599-607.	10.2	97
97	Effect of gum arabic on the storage stability and antibacterial ability of β-lactoglobulin stabilized d-limonene emulsion. Food Hydrocolloids, 2018, 84, 75-83.	10.7	31
98	Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin. Food Hydrocolloids, 2018, 85, 75-85.	10.7	152
99	Properties of Ternary Biopolymer Nanocomplexes of Zein, Sodium Caseinate, and Propylene Glycol Alginate and Their Functions of Stabilizing High Internal Phase Pickering Emulsions. Langmuir, 2018, 34, 9215-9227.	3.5	65
100	Composite zein - propylene glycol alginate particles prepared using solvent evaporation: Characterization and application as Pickering emulsion stabilizers. Food Hydrocolloids, 2018, 85, 281-290.	10.7	112
101	Characterization of curcumin loaded gliadin-lecithin composite nanoparticles fabricated by antisolvent precipitation in different blending sequences. Food Hydrocolloids, 2018, 85, 185-194.	10.7	80
102	Quercetagetin-Loaded Composite Nanoparticles Based on Zein and Hyaluronic Acid: Formation, Characterization, and Physicochemical Stability. Journal of Agricultural and Food Chemistry, 2018, 66, 7441-7450.	5.2	91
103	Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles. Food Chemistry, 2017, 228, 656-667.	8.2	125
104	A comparison of physicochemical and functional properties of icaritin-loaded liposomes based on different surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518, 218-231.	4.7	38
105	Physicochemical and <i>in vitro</i> antioxidant properties of pectin extracted from hot pepper (<i>Capsicum annuum</i> L. var. <i>acuminatum</i> (Fingerh.)) residues with hydrochloric and sulfuric acids. Journal of the Science of Food and Agriculture, 2017, 97, 4953-4960.	3.5	13
106	Quercetagetin-Loaded Zein–Propylene Glycol Alginate Ternary Composite Particles Induced by Calcium Ions: Structure Characterization and Formation Mechanism. Journal of Agricultural and Food Chemistry, 2017, 65, 3934-3945.	5.2	64
107	Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chemistry, 2017, 237, 1163-1171.	8.2	177
108	Inversion of the permeability of a tight gas reservoir with the combination of a deep Boltzmann kernel extreme learning machine and nuclear magnetic resonance logging transverse relaxation time spectrum data. Interpretation, 2017, 5, T341-T350.	1.1	24

Yang Wei

#	Article	IF	CITATIONS
109	Structural characterization and formation mechanism of zein-propylene glycol alginate binary complex induced by calcium ions. Food Research International, 2017, 100, 57-68.	6.2	46
110	Quercetagetin-loaded zein-propylene glycol alginate composite particles induced by calcium ions: Structural comparison between colloidal dispersions and lyophilized powders after in vitro simulated gastraintestinal digestion. Journal of Functional Foods, 2017, 37, 25-48.	3.4	27
111	Controlling the potential gastrointestinal fate of β-carotene emulsions using interfacial engineering: Impact of coating lipid droplets with polyphenol-protein-carbohydrate conjugate. Food Chemistry, 2017, 221, 395-403.	8.2	91
112	Formation and characterization of the binary complex between zein and propylene glycol alginate at neutral pH. Food Hydrocolloids, 2017, 64, 36-47.	10.7	95
113	Foodâ€Grade Covalent Complexes and Their Application as Nutraceutical Delivery Systems: A Review. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 76-95.	11.7	246
114	A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution. Food Hydrocolloids, 2017, 63, 625-634.	10.7	261
115	Interaction and formation mechanism of binary complex between zein and propylene glycol alginate. Carbohydrate Polymers, 2017, 157, 1638-1649.	10.2	107
116	The Interaction between Zein and Lecithin in Ethanol-Water Solution and Characterization of Zein–Lecithin Composite Colloidal Nanoparticles. PLoS ONE, 2016, 11, e0167172.	2.5	92
117	Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation. Journal of Agricultural and Food Chemistry, 2016, 64, 9532-9541.	5.2	55
118	Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions: Multilayer coatings formed using protein and protein–polyphenol conjugates. Food Chemistry, 2016, 205, 129-139.	8.2	138
119	Impact on Morphological Characterization and Emulsion Stability of Lactoferrin–Beet Pectin Electrostatic Complexes. Journal of Dispersion Science and Technology, 2016, 37, 927-940.	2.4	5
120	Analysis of numerical simulations and influencing factors of seasonal manganese pollution in reservoirs. Environmental Science and Pollution Research, 2016, 23, 14362-14372.	5.3	13
121	Role of continuous phase protein, (â^')-epigallocatechin-3-gallate and carrier oil on β-carotene degradation in oil-in-water emulsions. Food Chemistry, 2016, 210, 242-248.	8.2	23
122	In vitro antioxidant, anti-diabetic and antilipemic potentials of quercetagetin extracted from marigold (Tagetes erecta L.) inflorescence residues. Journal of Food Science and Technology, 2016, 53, 2614-2624.	2.8	47
123	Binary Complex Based on Zein and Propylene Glycol Alginate for Delivery of Quercetagetin. Biomacromolecules, 2016, 17, 3973-3985.	5.4	88
124	Dynamic high pressure microfluidization treatment of zein in aqueous ethanol solution. Food Chemistry, 2016, 210, 388-395.	8.2	34
125	Development of polyphenol-protein-polysaccharide ternary complexes as emulsifiers for nutraceutical emulsions: Impact on formation, stability, and bioaccessibility of β-carotene emulsions. Food Hydrocolloids, 2016, 61, 578-588.	10.7	161
126	Effects of Dynamic High-Pressure Microfluidization Treatment and the Presence of Quercetagetin on the Physical, Structural, Thermal, and Morphological Characteristics of Zein Nanoparticles. Food and Bioprocess Technology, 2016, 9, 320-330.	4.7	51

#	Article	IF	CITATIONS
127	Evaluation on oxidative stability of walnut beverage emulsions. Food Chemistry, 2016, 203, 409-416.	8.2	31
128	Quercetagetin loaded in soy protein isolate–îº-carrageenan complex: Fabrication mechanism and protective effect. Food Research International, 2016, 83, 31-40.	6.2	58
129	Evaluation of structural and functional properties of chitosanâ¿¿chlorogenic acid complexes. International Journal of Biological Macromolecules, 2016, 86, 376-382.	7.5	52
130	Impact of extraction parameters on chemical composition and antioxidant activity of bioactive compounds from Chinese licorice (<i>Glycyrrhiza uralensis</i> Fisch.) by subcritical water. Separation Science and Technology, 2016, 51, 609-621.	2.5	18
131	Physicochemical properties of β-carotene bilayer emulsions coated by milk proteins and chitosan–EGCG conjugates. Food Hydrocolloids, 2016, 52, 590-599.	10.7	79
132	Influence of polysaccharides on the physicochemical properties of lactoferrin–polyphenol conjugates coated β-carotene emulsions. Food Hydrocolloids, 2016, 52, 661-669.	10.7	83
133	Impact of pH, freeze–thaw and thermal sterilization on physicochemical stability of walnut beverage emulsion. Food Chemistry, 2016, 196, 475-485.	8.2	45
134	Physicochemical properties of β-carotene emulsions stabilized by chlorogenic acid–lactoferrin–glucose/polydextrose conjugates. Food Chemistry, 2016, 196, 338-346.	8.2	63
135	The mechanism of hydrothermal hydrolysis for glycyrrhizic acid into glycyrrhetinic acid and glycyrrhetinic acid 3- O -mono-β- d -glucuronide in subcritical water. Food Chemistry, 2016, 190, 912-921.	8.2	16
136	Effects of antioxidants on the stability of β-Carotene in O/W emulsions stabilized by Gum Arabic. Journal of Food Science and Technology, 2015, 52, 3300-11.	2.8	31
137	Nonenzymatic Browning Criteria to Sea Buckthorn Juice during Thermal Processing. Journal of Food Process Engineering, 2015, 38, 67-75.	2.9	16
138	Optimization by response surface methodology of supercritical carbon dioxide extraction of flavour compounds from Chinese liquor vinasse. Flavour and Fragrance Journal, 2015, 30, 275-281.	2.6	18
139	Mathematical Modeling of Betanin Extraction from Red Beet (<i>Beta vulgaris</i> L.) by Solid–Liquid Method. International Journal of Food Engineering, 2015, 11, 17-22.	1.5	2
140	Inhibition of the Aggregation of Lactoferrin and (â^')-Epigallocatechin Gallate in the Presence of Polyphenols, Oligosaccharides, and Collagen Peptide. Journal of Agricultural and Food Chemistry, 2015, 63, 5035-5045.	5.2	29
141	HPLC–DAD–MS/MS identification and HPLC–ABTS·+ on-line antioxidant activity evaluation of bioactive compounds in liquorice (Glycyrrhiza uralensis Fisch.) extract. European Food Research and Technology, 2015, 240, 1035-1048.	3.3	17
142	Effects of Chitosan Addition on In Vitro Digestibility of Protein-Coated Lipid Droplets. Journal of Dispersion Science and Technology, 2015, 36, 1556-1563.	2.4	9
143	Structural characterization and functional evaluation of lactoferrin–polyphenol conjugates formed by free-radical graft copolymerization. RSC Advances, 2015, 5, 15641-15651.	3.6	199
144	Effect of carrier oils on the physicochemical properties of orange oil beverage emulsions. Food Research International, 2015, 74, 260-268.	6.2	28

#	Article	IF	CITATIONS
145	Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking. Food Chemistry, 2015, 185, 90-98.	8.2	142
146	Physical, structural, thermal and morphological characteristics of zeinquercetagetin composite colloidal nanoparticles. Industrial Crops and Products, 2015, 77, 476-483.	5.2	38
147	Glycosylation improves the functional characteristics of chlorogenic acid–lactoferrin conjugate. RSC Advances, 2015, 5, 78215-78228.	3.6	41
148	A novel copigment of quercetagetin for stabilization of grape skin anthocyanins. Food Chemistry, 2015, 166, 50-55.	8.2	50
149	Influence of soybean soluble polysaccharides and beet pectin on the physicochemical properties of lactoferrin-coated orange oil emulsion. Food Hydrocolloids, 2015, 44, 443-452.	10.7	67
150	Physicochemical characterisation of β-carotene emulsion stabilised by covalent complexes of α-lactalbumin with (â^')-epigallocatechin gallate or chlorogenic acid. Food Chemistry, 2015, 173, 564-568.	8.2	34
151	Optimization of subcritical water extraction parameters of antioxidant polyphenols from sea buckthorn (Hippophaë rhamnoides L.) seed residue. Journal of Food Science and Technology, 2015, 52, 1534-1542.	2.8	32
152	Extraction and analysis of antioxidant compounds from the residues of Asparagus officinalis L Journal of Food Science and Technology, 2015, 52, 2690-2700.	2.8	72
153	Preparation and functional evaluation of chitosanâ€EGCG conjugates. Journal of Applied Polymer Science, 2014, 131, .	2.6	44
154	On-line HPLC-ABTS•+ evaluation and HPLC-MS n identification of bioactive compounds in hot pepper peel residues. European Food Research and Technology, 2014, 238, 837-844.	3.3	11
155	Influence of whey protein–beet pectin conjugate on the properties and digestibility of β-carotene emulsion during in vitro digestion. Food Chemistry, 2014, 156, 374-379.	8.2	107
156	Native and Thermally Modified Protein–Polyphenol Coassemblies: Lactoferrin-Based Nanoparticles and Submicrometer Particles as Protective Vehicles for (â`')-Epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry, 2014, 62, 10816-10827.	5.2	41
157	Structure and antimicrobial mechanism of ɛ-polylysine–chitosan conjugates through Maillard reaction. International Journal of Biological Macromolecules, 2014, 70, 427-434.	7.5	75
158	The aggregation of soy protein isolate on the surface of Bifidobacterium. Food Research International, 2014, 64, 323-328.	6.2	4
159	Subcritical water extraction and antioxidant activity evaluation with on-line HPLC-ABTS·+ assay of phenolic compounds from marigold (Tagetes erecta L.) flower residues. Journal of Food Science and Technology, 2014, 52, 3803-11.	2.8	26
160	Covalent complexation and functional evaluation of (â^')-epigallocatechin gallate and α-lactalbumin. Food Chemistry, 2014, 150, 341-347.	8.2	86
161	Impact of chitosan–EGCG conjugates on physicochemical stability ofÂβ-carotene emulsion. Food Hydrocolloids, 2014, 39, 163-170.	10.7	59
162	Molecular interaction between (â^)-epigallocatechin-3-gallate and bovine lactoferrin using multi-spectroscopic method and isothermal titration calorimetry. Food Research International, 2014, 64, 141-149.	6.2	101

Yang Wei

#	Article	IF	CITATIONS
163	Impact of High Hydrostatic Pressure on the Emulsifying Properties of Whey Protein Isolate–Chitosan Mixtures. Food and Bioprocess Technology, 2013, 6, 1024-1031.	4.7	41
164	Stability of β-Carotene in Oil-in-Water Emulsions Prepared by Mixed Layer and Bilayer of Whey Protein Isolate and Beet Pectin. Journal of Dispersion Science and Technology, 2013, 34, 785-792.	2.4	11
165	Influence of pH, EDTA, α-tocopherol, and WPI oxidation on the degradation of β-carotene in WPI-stabilized oil-in-water emulsions. LWT - Food Science and Technology, 2013, 54, 236-241.	5.2	39
166	8,9-Epoxyeicosatrienoic Acid Inhibits Antibody Production of B Lymphocytes in Mice. PLoS ONE, 2012, 7, e40258.	2.5	15
167	Effect of chitosan molecular weight on the stability and rheological properties of β-carotene emulsions stabilized by soybean soluble polysaccharides. Food Hydrocolloids, 2012, 26, 205-211.	10.7	81
168	Impact of whey protein – Beet pectin conjugation on the physicochemical stability of β-carotene emulsions. Food Hydrocolloids, 2012, 28, 258-266.	10.7	136
169	Identification of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant capacities by HPLC–ABTS+ assay. Food Research International, 2011, 44, 1161-1167.	6.2	102
170	Optimization of Supercritical Carbon Dioxide Extraction of Gardenia Fruit Oil and the Analysis of Functional Components. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 1071-1079.	1.9	24
171	The Effect of Whey Protein Isolate-Dextran Conjugates on the Freeze-Thaw Stability of Oil-in-Water Emulsions. Journal of Dispersion Science and Technology, 2010, 32, 77-83.	2.4	32
172	Investigation into the Physicochemical Stability and Rheological Properties of β-Carotene Emulsion Stabilized by Soybean Soluble Polysaccharides and Chitosan. Journal of Agricultural and Food Chemistry, 2010, 58, 8604-8611.	5.2	92
173	Effects of Homogenization Models and Emulsifiers on the Physicochemical Properties of β-Carotene Nanoemulsions. Journal of Dispersion Science and Technology, 2010, 31, 986-993.	2.4	99
174	Optimization of Enzymatic Hydrolysis of Chicken Fat in Emulsion by Response Surface Methodology. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 485-494.	1.9	7
175	Effects of supercritical carbon dioxide on volatile formation from Maillard reaction between ribose and cysteine. Journal of the Science of Food and Agriculture, 2008, 88, 328-335.	3.5	16
176	Optimisation of supercritical carbon dioxide extraction of lutein esters from marigold (<i>Tagetes) Tj ETQq0 0 0 Technology, 2008, 43, 1763-1769.</i>	rgBT /Ove 2.7	rlock 10 Tf 50 40
177	Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International, 2008, 41, 61-68.	6.2	434