

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1582201/publications.pdf Version: 2024-02-01

FENCL

#	Article	IF	CITATIONS
1	Anatomic Point–Based Lung Region with Zone Identification for Radiologist Annotation and Machine Learning for Chest Radiographs. Journal of Digital Imaging, 2021, 34, 922-931.	2.9	0
2	Deep learning-based segmentation of malignant pleural mesothelioma tumor on computed tomography scans: application to scans demonstrating pleural effusion. Journal of Medical Imaging, 2020, 7, 1.	1.5	8
3	Deep convolutional neural networks in the classification of dual-energy thoracic radiographic views for efficient workflow: analysis on over 6500 clinical radiographs. Journal of Medical Imaging, 2020, 7, 1.	1.5	3
4	Correlation of patient survival with clinical tumor measurements in malignant pleural mesothelioma. European Radiology, 2019, 29, 2981-2988.	4.5	1
5	Impact of imprinted labels on deep learning classification of AP and PA thoracic radiographs. , 2019, , .		2
6	Clinical significance of noncalcified lung nodules in patients with breast cancer. Breast Cancer Research and Treatment, 2016, 159, 265-271.	2.5	8
7	ROC Curve for Extremely Subtle Lung Nodules on Chest Radiographs Confirmed by CT Scan. Academic Radiology, 2016, 23, 297-303.	2.5	3
8	Potential clinical impact of advanced imaging and computer-aided diagnosis in chest radiology: importance of radiologist's role and successful observer study. Radiological Physics and Technology, 2015, 8, 161-173.	1.9	1
9	Computer-Aided Nodule Detection System. Academic Radiology, 2015, 22, 475-480.	2.5	22
10	Improved detection of focal pneumonia by chest radiography with bone suppression imaging. European Radiology, 2012, 22, 2729-2735.	4.5	27
11	Small Lung Cancers: Improved Detection by Use of Bone Suppression Imaging—Comparison with Dual-Energy Subtraction Chest Radiography. Radiology, 2011, 261, 937-949.	7.3	51
12	Improved Detection of Subtle Lung Nodules by Use of Chest Radiographs With Bone Suppression Imaging: Receiver Operating Characteristic Analysis With and Without Localization. American Journal of Roentgenology, 2011, 196, W535-W541.	2.2	39
13	True Detection Versus "Accidental―Detection of Small Lung Cancer by a Computer-Aided Detection (CAD) Program on Chest Radiographs. Journal of Digital Imaging, 2010, 23, 66-72.	2.9	4
14	Automated segmentation of lungs with severe interstitial lung disease in CT. Medical Physics, 2009, 36, 4592-4599.	3.0	109
15	Subjective Similarity of Patterns of Diffuse Interstitial Lung Disease on Thin-section CT. Academic Radiology, 2009, 16, 477-485.	2.5	6
16	An Investigation of Radiologists' Perception of Lesion Similarity. Academic Radiology, 2008, 15, 887-894.	2.5	19
17	Computerized Detection of Lung Nodules in Thin-Section CT Images by Use of Selective Enhancement Filters and an Automated Rule-Based Classifier. Academic Radiology, 2008, 15, 165-175.	2.5	128
18	Improved Detection of Small Lung Cancers with Dual-Energy Subtraction Chest Radiography. American Journal of Roentgenology, 2008, 190, 886-891.	2.2	51

Feng Li

#	Article	IF	CITATIONS
19	Lung Cancers Missed on Chest Radiographs: Results Obtained with a Commercial Computer-aided Detection Program. Radiology, 2008, 246, 273-280.	7.3	60
20	Usefulness of Computer-Aided Diagnosis Schemes for Vertebral Fractures and Lung Nodules on Chest Radiographs. American Journal of Roentgenology, 2008, 191, 260-265.	2.2	29
21	Dual Energy Subtraction and Temporal Subtraction Chest Radiography. Journal of Thoracic Imaging, 2008, 23, 77-85.	1.5	45
22	Computer-Aided Diagnosis for Improved Detection of Lung Nodules by Use of Posterior-Anterior and Lateral Chest Radiographs. Academic Radiology, 2007, 14, 28-37.	2.5	24
23	Computer-aided Diagnosis for the Detection and Classification of Lung Cancers on Chest Radiographs. Academic Radiology, 2006, 13, 995-1003.	2.5	52
24	Improving Radiologists' Recommendations With Computer-Aided Diagnosis for Management of Small Nodules Detected by CT. Academic Radiology, 2006, 13, 943-950.	2.5	14
25	Computerized detection of vertebral compression fractures on lateral chest radiographs: Preliminary results with a tool for early detection of osteoporosis. Medical Physics, 2006, 33, 4664-4674.	3.0	24
26	Integrating PET and CT information to improve diagnostic accuracy for lung nodules: A semiautomatic computer-aided method. Journal of Nuclear Medicine, 2006, 47, 1075-80.	5.0	33
27	Computer-aided Detection of Peripheral Lung Cancers Missed at CT: ROC Analyses without and with Localization. Radiology, 2005, 237, 684-690.	7.3	113
28	Evaluation of automated lung nodule detection on low-dose computed tomography scans from a lung cancer screening program1. Academic Radiology, 2005, 12, 337-346.	2.5	33
29	Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Transactions on Medical Imaging, 2005, 24, 1138-1150.	8.9	199
30	Radiologists' Performance for Differentiating Benign from Malignant Lung Nodules on High-Resolution CT Using Computer-Estimated Likelihood of Malignancy. American Journal of Roentgenology, 2004, 183, 1209-1215.	2.2	93
31	Malignant versus Benign Nodules at CT Screening for Lung Cancer: Comparison of Thin-Section CT Findings. Radiology, 2004, 233, 793-798.	7.3	226
32	Effect of temporal subtraction images on radiologists' detection of lung cancer on CT: Results of the observer performance study with use of film computed tomography images1. Academic Radiology, 2004, 11, 1337-1343.	2.5	26
33	Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening1. Academic Radiology, 2004, 11, 617-629.	2.5	146
34	Artificial neural networks (ANNs) for differential diagnosis of interstitial lung disease : results of a simulation test with actual clinical cases1. Academic Radiology, 2004, 11, 29-37.	2.5	36
35	Low-dose computed tomography screening for lung cancer in a general population. Academic Radiology, 2003, 10, 1013-1020.	2.5	24
36	Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images. Medical Physics, 2003, 30, 387-394.	3.0	104

Feng Li

#	Article	IF	CITATIONS
37	Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Medical Physics, 2003, 30, 1602-1617.	3.0	226
38	Investigation of new psychophysical measures for evaluation of similar images on thoracic computed tomography for distinction between benign and malignant nodules. Medical Physics, 2003, 30, 2584-2593.	3.0	82
39	Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography. Medical Physics, 2003, 30, 2440-2454.	3.0	135
40	Lung Cancers Missed at Low-Dose Helical CT Screening in a General Population: Comparison of Clinical, Histopathologic, and Imaging Findings. Radiology, 2002, 225, 673-683.	7.3	198
41	Lung Cancer: Performance of Automated Lung Nodule Detection Applied to Cancers Missed in a CT Screening Program. Radiology, 2002, 225, 685-692.	7.3	264
42	Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet, The, 1998, 351, 1242-1245.	13.7	881