Achim Kless

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1581742/publications.pdf Version: 2024-02-01

ACHIM KIESS

#	Article	IF	CITATIONS
1	A longer isoform of Stim1 is a negative SOCE regulator but increases cAMPâ€modulated NFAT signaling. EMBO Reports, 2022, 23, e53135.	4.5	13
2	Validity of the cold pressor test and pain sensitivity questionnaire via online self-administration. PLoS ONE, 2020, 15, e0231697.	2.5	13
3	Identification of aurintricarboxylic acid as a potent allosteric antagonist of P2X1 and P2X3 receptors. Neuropharmacology, 2019, 158, 107749.	4.1	38
4	Structural Prediction of the Dimeric Form of the Mammalian Translocator Membrane Protein TSPO: A Key Target for Brain Diagnostics. International Journal of Molecular Sciences, 2018, 19, 2588.	4.1	15
5	Localization of the gate and selectivity filter of the full-length P2X7 receptor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2156-E2165.	7.1	65
6	Quantitative Assessment of Drug Delivery to Tissues and Association with Phospholipidosis: A Case Study with Two Structurally Related Diamines in Development. Molecular Pharmaceutics, 2017, 14, 4362-4373.	4.6	9
7	Key Sites for P2X Receptor Function and Multimerization: Overview of Mutagenesis Studies on a Structural Basis. Current Medicinal Chemistry, 2015, 22, 799-818.	2.4	32
8	Structural Determinants for the Binding of Morphinan Agonists to the μ-Opioid Receptor. PLoS ONE, 2015, 10, e0135998.	2.5	20
9	Discovery of a Potent Analgesic NOP and Opioid Receptor Agonist: Cebranopadol. ACS Medicinal Chemistry Letters, 2014, 5, 857-862.	2.8	76
10	Discovery of Spiro[cyclohexane-dihydropyrano[3,4- <i>b</i>]indole]-amines as Potent NOP and Opioid Receptor Agonists. ACS Medicinal Chemistry Letters, 2014, 5, 851-856.	2.8	30
11	Salt Bridge Switching from Arg290/Glu167 to Arg290/ATP Promotes the Closed-to-Open Transition of the P2X2 Receptor. Molecular Pharmacology, 2013, 83, 73-84.	2.3	27
12	Heteromeric assembly of P2X subunits. Frontiers in Cellular Neuroscience, 2013, 7, 250.	3.7	56
13	Advances in Targeting Voltageâ€Gated Sodium Channels with Small Molecules. ChemMedChem, 2012, 7, 1712-1740.	3.2	64
14	Molecular Determinants of Potent P2X2 Antagonism Identified by Functional Analysis, Mutagenesis, and Homology Docking. Molecular Pharmacology, 2011, 79, 649-661.	2.3	43
15	Classification of Highly Unbalanced CYP450 Data of Drugs Using Cost Sensitive Machine Learning Techniques. Journal of Chemical Information and Modeling, 2007, 47, 92-103.	5.4	79
16	Cytochrome P450 Classification of Drugs with Support Vector Machines Implementing the Nearest Point Algorithm. Lecture Notes in Computer Science, 2004, , 191-205.	1.3	3
17	Mit Data Mining Entwicklungsprozesse beschleunigen. Nachrichten Aus Der Chemie, 2003, 51, 1264-1268.	0.0	0
18	Construction of chiral Ti(IV)–Rh(I)–salenophos complexes and their application in the asymmetric hydroformylation of functionalised olefins. Tetrahedron: Asymmetry, 1999, 10, 1803-1811.	1.8	32

ACHIM KLESS

#	Article	IF	CITATIONS
19	Origin of the Preference for the Orbital Symmetry Forbidden Stereochemistry of the 1,5-Sigmatropic Shift of Substituted Norcaradienes. Journal of the American Chemical Society, 1999, 121, 4524-4525.	13.7	52
20	Studies on the formation of uniform $\hat{\mathbf{h}}$ 3-coordinated triphos-Mo(0)-complexes. Journal of Organometallic Chemistry, 1998, 553, 99-102.	1.8	6
21	Retro-cycloadditions and sigmatropic shifts: the C7H8 and C7 H10 potential energy surfaces. Pure and Applied Chemistry, 1998, 70, 1947-1952.	1.9	9
22	Ab InitioStudies of Rhodium(I)â^'N-Alkenylamide Complexes withcis- andtrans-Coordinating Phosphines:Â Relevance for the Mechanism of Catalytic Asymmetric Hydrogenation of Prochiral Dehydroamino Acids. Organometallics, 1997, 16, 2096-2100.	2.3	20
23	Chiral phosphinephosphites having axial and central chirality in asymmetric hydroformylations. Tetrahedron: Asymmetry, 1996, 7, 33-36.	1.8	39
24	The first chiral early-late heterobimetallic complex — A titanium(IV)-palladium(II) complex based on salenophos. Tetrahedron, 1996, 52, 14599-14606.	1.9	45
25	An Efficient Strategy for the Synthesis of New Chiral and Prochiral Trisphosphines. Synlett, 1996, 1996, 267-269.	1.8	10
26	Computational chemistry using the PC. Zeitschrift Fur Physikalische Chemie, 1996, 193, 222-222.	2.8	0
27	βâ€Alkoxy―and βâ€Hydroxyalkylphosphanes as Ligands in the Stereoselective Hydrogenation — A Comparison Chemische Berichte, 1995, 128, 767-773.	ⁿ ö.2	30
28	Hydroxyalkylphosphines in asymmetric hydrogenations. Tetrahedron: Asymmetry, 1995, 6, 1973-1988.	1.8	33
29	A new chiral multidentate ligand for asymmetric catalysis. Tetrahedron Letters, 1995, 36, 4601-4602.	1.4	26
30	Synthesis and catalytic properties of an acyclic analogue of hydroxy norphos. Tetrahedron, 1994, 50, 10419-10430.	1.9	36
31	Synthesis of an optically active hydroxy diphosphine, a new ligand for asymmetric catalysis. Tetrahedron Letters, 1994, 35, 6071-6074.	1.4	14