
Maureen E Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1581238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural analysis of carbohydrate binding by the macrophage mannose receptor CD206. Journal of Biological Chemistry, 2021, 296, 100368.	3.4	58
2	Mammalian lectin arrays for screening host–microbe interactions. Journal of Biological Chemistry, 2020, 295, 4541-4555.	3.4	12
3	CD23 is a glycan-binding receptor in some mammalian species. Journal of Biological Chemistry, 2019, 294, 14845-14859.	3.4	11
4	Absence of a human ortholog of rodent Kupffer cell galactose-binding receptor encoded by the CLEC4f gene. Glycobiology, 2019, 29, 332-345.	2.5	10
5	Mammalian sugarâ€binding receptors: known functions and unexplored roles. FEBS Journal, 2019, 286, 1800-1814.	4.7	44
6	Identification of serum glycoprotein ligands for the immunomodulatory receptor blood dendritic cell antigen 2. Glycobiology, 2018, 28, 592-600.	2.5	6
7	Insights into Interactions of Mycobacteria with the Host Innate Immune System from a Novel Array of Synthetic Mycobacterial Glycans. ACS Chemical Biology, 2017, 12, 2990-3002.	3.4	66
8	Mechanism of pathogen recognition by human dectin-2. Journal of Biological Chemistry, 2017, 292, 13402-13414.	3.4	65
9	Oligomerization domains in the glycanâ€binding receptors DCâ€SIGN and DCâ€SIGNR: Sequence variation and stability differences. Protein Science, 2017, 26, 306-316.	7.6	9
10	Binding Sites for Acylated Trehalose Analogs of Glycolipid Ligands on an Extended Carbohydrate Recognition Domain of the Macrophage Receptor Mincle. Journal of Biological Chemistry, 2016, 291, 21222-21233.	3.4	58
11	Mouse Mincle: Characterization as a Model for Human Mincle and Evolutionary Implications. Molecules, 2015, 20, 6670-6682.	3.8	23
12	Recent insights into structures and functions of C-type lectins in the immune system. Current Opinion in Structural Biology, 2015, 34, 26-34.	5.7	200
13	A Novel Mechanism for Binding of Galactose-terminated Glycans by the C-type Carbohydrate Recognition Domain in Blood Dendritic Cell Antigen 2. Journal of Biological Chemistry, 2015, 290, 16759-16771.	3.4	36
14	C-Type Lectin Family: Overview. , 2015, , 1015-1020.		2
15	Defining the conformation of human mincle that interacts with mycobacterial trehalose dimycolate. Glycobiology, 2014, 24, 1291-1300.	2.5	47
16	Convergent and divergent mechanisms of sugar recognition across kingdoms. Current Opinion in Structural Biology, 2014, 28, 14-22.	5.7	59
17	Overview of the C-Type Lectin Family. , 2014, , 1-6.		1
18	Common Polymorphisms in Human Langerin Change Specificity for Glycan Ligands. Journal of Biological Chemistry, 2013, 288, 36762-36771.	3.4	53

#	Article	IF	CITATIONS
19	Organization of the extracellular portion of the macrophage galactose receptor: A trimeric cluster of simple binding sites for N-acetylgalactosamine. Glycobiology, 2013, 23, 853-864.	2.5	46
20	Mechanism for Recognition of an Unusual Mycobacterial Glycolipid by the Macrophage Receptor Mincle. Journal of Biological Chemistry, 2013, 288, 28457-28465.	3.4	108
21	Geometry and Adhesion of Extracellular Domains of DC-SIGNR Neck Length Variants Analyzed by Force–Distance Measurements. Biochemistry, 2011, 50, 6125-6132.	2.5	13
22	Structural Basis for Langerin Recognition of Diverse Pathogen and Mammalian Glycans through a Single Binding Site. Journal of Molecular Biology, 2011, 405, 1027-1039.	4.2	105
23	Glycoproteomic characterization of carriers of the CD15/Lewisx epitope on Hodgkin's Reed-Sternberg cells. BMC Biochemistry, 2011, 12, 13.	4.4	15
24	Identification of Neutrophil Granule Glycoproteins as Lewisx-containing Ligands Cleared by the Scavenger Receptor C-type Lectin. Journal of Biological Chemistry, 2011, 286, 24336-24349.	3.4	35
25	Mouse LSECtin as a model for a human Ebola virus receptor. Glycobiology, 2011, 21, 806-812.	2.5	28
26	Trimeric Structure of Langerin. Journal of Biological Chemistry, 2010, 285, 13285-13293.	3.4	67
27	Herpes Simplex Virus Type 2 Enhances HIV-1 Susceptibility by Affecting Langerhans Cell Function. Journal of Immunology, 2010, 185, 1633-1641.	0.8	69
28	C-type lectin Langerin is a β-glucan receptor on human Langerhans cells that recognizes opportunistic and pathogenic fungi. Molecular Immunology, 2010, 47, 1216-1225.	2.2	121
29	Identification of Novel Contributions to High-affinity Glycoprotein–Receptor Interactions using Engineered Ligands. Journal of Molecular Biology, 2010, 396, 685-696.	4.2	27
30	Engineered Carbohydrate-Recognition Domains for Glycoproteomic Analysis of Cell Surface Glycosylation and Ligands for Glycan-Binding Receptors. Methods in Enzymology, 2010, 480, 165-179.	1.0	9
31	Binding-site geometry and flexibility in DC-SIGN demonstrated with surface force measurements. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11524-11529.	7.1	58
32	Prolectin, a Glycan-binding Receptor on Dividing B Cells in Germinal Centers. Journal of Biological Chemistry, 2009, 284, 18537-18544.	3.4	35
33	Targeted glycoproteomic identification of cancer cell glycosylation. Glycobiology, 2009, 19, 899-909.	2.5	63
34	A murine DC-SIGN homologue contributes to early host defense against <i>Mycobacterium tuberculosis</i> . Journal of Experimental Medicine, 2009, 206, 2205-2220.	8.5	98
35	Structural insights into what glycan arrays tell us about how glycan-binding proteins interact with their ligands. Glycobiology, 2009, 19, 1155-1162.	2.5	82
36	Autonomous Tetramerization Domains in the Glycan-binding Receptors DC-SIGN and DC-SIGNR. Journal of Molecular Biology, 2009, 387, 1075-1080.	4.2	30

#	Article	IF	CITATIONS
37	Segmented Helical Structure of the Neck Region of the Glycan-Binding Receptor DC-SIGNR. Journal of Molecular Biology, 2009, 394, 613-620.	4.2	27
38	Mutz-3-derived Langerhans cells are a model to study HIV-1 transmission and potential inhibitors. Journal of Leukocyte Biology, 2009, 87, 637-643.	3.3	30
39	A Novel Mechanism for LSECtin Binding to Ebola Virus Surface Glycoprotein through Truncated Glycans. Journal of Biological Chemistry, 2008, 283, 593-602.	3.4	93
40	Scavenger Receptor C-type Lectin Binds to the Leukocyte Cell Surface Glycan Lewisx by a Novel Mechanism. Journal of Biological Chemistry, 2007, 282, 17250-17258.	3.4	51
41	Paradigms for glycan-binding receptors in cell adhesion. Current Opinion in Cell Biology, 2007, 19, 572-577.	5.4	102
42	Lewis x Antigen Mediates Adhesion of Human Breast Carcinoma Cells to Activated Endothelium. Possible Involvement of the Endothelial Scavenger Receptor C-type Lectin. Breast Cancer Research and Treatment, 2007, 101, 161-174.	2.5	50
43	Collagen binding by the mannose receptor mediated through the fibronectin type II domain. Biochemical Journal, 2006, 395, 579-586.	3.7	84
44	Two categories of mammalian galactose-binding receptors distinguished by glycan array profiling. Glycobiology, 2006, 16, 1C-7C.	2.5	132
45	Widely Divergent Biochemical Properties of the Complete Set of Mouse DC-SIGN-related Proteins. Journal of Biological Chemistry, 2006, 281, 20440-20449.	3.4	144
46	All but the Shortest Polymorphic Forms of the Viral Receptor DC-SIGNR Assemble into Stable Homo- and Heterotetramers. Journal of Biological Chemistry, 2006, 281, 16794-16798.	3.4	16
47	Polymorphisms in Human Langerin Affect Stability and Sugar Binding Activity. Journal of Biological Chemistry, 2006, 281, 15450-15456.	3.4	31
48	Targeting diversity. Nature Structural and Molecular Biology, 2005, 12, 830-831.	8.2	4
49	Selective Binding of the Scavenger Receptor C-type Lectin to Lewisx Trisaccharide and Related Glycan Ligands. Journal of Biological Chemistry, 2005, 280, 22993-22999.	3.4	69
50	The mannose receptor fails to enhance processing and presentation of a glycoprotein antigen in transfected fibroblasts. Glycobiology, 2004, 14, 7C-12C.	2.5	19
51	Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nature Structural and Molecular Biology, 2004, 11, 591-598.	8.2	538
52	Oligolysine-based Oligosaccharide Clusters. Journal of Biological Chemistry, 2003, 278, 23922-23929.	3.4	110
53	Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology, 2003, 13, 401-410.	2.5	168
54	Identification of Lectins from Genomic Sequence Data. Methods in Enzymology, 2003, 362, 560-567.	1.0	17

#	Article	IF	CITATIONS
55	Structure–Function Analysis of C-Type Animal Lectins. Methods in Enzymology, 2003, 363, 3-16.	1.0	26
56	Characterization of Sugar Binding by the Mannose Receptor Family Member, Endo180. Journal of Biological Chemistry, 2002, 277, 50469-50475.	3.4	80
57	Glycan arrays for functional glycomics. Genome Biology, 2002, 3, reviews1034.1.	9.6	67
58	Complex Encounters at the Macrophage-Mycobacterium Interface: Studies on the Role of the Mannose Receptor and CD14 in Experimental Infection Models with Mycobacterium Avium. Immunobiology, 2001, 204, 558-571.	1.9	19
59	An Extended Conformation of the Macrophage Mannose Receptor. Journal of Biological Chemistry, 2001, 276, 14759-14766.	3.4	52
60	Structure and Function of the Macrophage Mannose Receptor. Results and Problems in Cell Differentiation, 2001, 33, 105-121.	0.7	37
61	Structure of a C-type Carbohydrate Recognition Domain from the Macrophage Mannose Receptor. Journal of Biological Chemistry, 2000, 275, 21539-21548.	3.4	118
62	Multiple interactions between pituitary hormones and the mannose receptor. Biochemical Journal, 1999, 343, 403.	3.7	12
63	Multiple interactions between pituitary hormones and the mannose receptor. Biochemical Journal, 1999, 343, 403-411.	3.7	37
64	The Câ€ŧype lectin superfamily in the immune system. Immunological Reviews, 1998, 163, 19-34.	6.0	964
65	Evolving views of protein glycosylation. Trends in Biochemical Sciences, 1998, 23, 321-324.	7.5	164
66	Orientation of sugars bound to the principal C-type carbohydrate-recognition domain of the macrophage mannose receptor. Biochemical Journal, 1998, 333, 601-608.	3.7	35
67	Letters to the Glyco-Forum. Glycobiology, 1997, 7, 323-323.	2.5	28
68	Mechanism of Ca2- and Monosaccharide Binding to a C-type Carbohydrate-recognition Domain of the Macrophage Mannose Receptor. Journal of Biological Chemistry, 1997, 272, 5668-5681.	3.4	88
69	Biology of Animal Lectins. Annual Review of Cell Biology, 1993, 9, 237-264.	26.1	725
70	Recognition of complex carbohydrates by the macrophage mannose receptor. Biochemical Society Transactions, 1993, 21, 468-473.	3.4	32
71	Expression and purification of the cytoplasmic tail of an endocytic receptor by fusion to a carbohydrate-recognition domain. Protein Expression and Purification, 1992, 3, 308-312.	1.3	6
72	Uptake of processing of glycoproteins by isolated rat hepatic endothelial and Kupffer cells. Journal of Hepatology, 1990, 10, 211-216.	3.7	16

#	Article	IF	CITATIONS
73	Carbohydrate-binding proteins of human serum: isolation of two mannose/fucose-specific lectins. BBA - Proteins and Proteomics, 1987, 915, 60-67.	2.1	23
74	Mammalian mannose-binding proteins. Clinical Science, 1986, 70, 539-546.	4.3	13
75	The effects of diabetes and insulin on glycoprotein metabolism by rat liver. Journal of Hepatology, 1985, 1, 629-638.	3.7	2
76	Human serum contains a lectin which inhibits hepatic uptake of glycoproteins. FEBS Letters, 1984, 173, 63-66.	2.8	13