
Esteban Celis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1580725/publications.pdf Version: 2024-02-01

ESTERAN CELIS

#	Article	IF	CITATIONS
1	Interruption of MDM2 signaling augments MDM2-targeted T cell-based antitumor immunotherapy through antigen-presenting machinery. Cancer Immunology, Immunotherapy, 2021, 70, 3421-3434.	4.2	11
2	Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. OncoImmunology, 2021, 10, 1856545.	4.6	13
3	Role of dendritic cellâ€mediated immune response in oral homeostasis: A new mechanism of osteonecrosis of the jaw. FASEB Journal, 2020, 34, 2595-2608.	0.5	25
4	Poly-ICLC, a multi-functional immune modulator for treating cancer. Seminars in Immunology, 2020, 49, 101414.	5.6	47
5	Poly-IC enhances the effectiveness of cancer immunotherapy by promoting T cell tumor infiltration. , 2020, 8, e001224.		41
6	Double-Stranded RNA Immunomodulators in Prostate Cancer. Urologic Clinics of North America, 2020, 47, e1-e8.	1.8	2
7	PD-L1-specific helper T-cells exhibit effective antitumor responses: new strategy of cancer immunotherapy targeting PD-L1 in head and neck squamous cell carcinoma. Journal of Translational Medicine, 2019, 17, 207.	4.4	13
8	Primary tumor-induced immunity eradicates disseminated tumor cells in syngeneic mouse model. Nature Communications, 2019, 10, 1430.	12.8	77
9	The route of administration dictates the immunogenicity of peptide-based cancer vaccines in mice. Cancer Immunology, Immunotherapy, 2019, 68, 455-466.	4.2	31
10	Sustained Persistence of IL2 Signaling Enhances the Antitumor Effect of Peptide Vaccines through T-cell Expansion and Preventing PD-1 Inhibition. Cancer Immunology Research, 2018, 6, 617-627.	3.4	13
11	Identification of αâ€fetoproteinâ€specific Tâ€cell receptors for hepatocellular carcinoma immunotherapy. Hepatology, 2018, 68, 574-589.	7.3	87
12	Role of MDA5 and interferon-I in dendritic cells for T cell expansion by anti-tumor peptide vaccines in mice. Cancer Immunology, Immunotherapy, 2018, 67, 1091-1103.	4.2	20
13	Innovative immunotherapy for nasal NK/T-cell lymphoma. Journal of Japan Society of Immunology & Allergology in Otolaryngology, 2018, 36, 15-22.	0.0	0
14	H3K4me3 mediates the NF-κB p50 homodimer binding to the <i>pdcd1</i> promoter to activate PD-1 transcription in T cells. Oncolmmunology, 2018, 7, e1483302.	4.6	15
15	Targeting phosphorylated p53 to elicit tumor-reactive T helper responses against head and neck squamous cell carcinoma. Oncolmmunology, 2018, 7, e1466771.	4.6	14
16	An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. Journal of Clinical Investigation, 2018, 128, 5549-5560.	8.2	193
17	Designing therapeutic cancer vaccines by mimicking viral infections. Cancer Immunology, Immunotherapy, 2017, 66, 203-213.	4.2	36
18	Local Activation of p53 in the Tumor Microenvironment Overcomes Immune Suppression and Enhances Antitumor Immunity. Cancer Research, 2017, 77, 2292-2305.	0.9	111

ESTEBAN CELIS

#	Article	IF	CITATIONS
19	Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunology, Immunotherapy, 2017, 66, 705-716.	4.2	128
20	Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy. Cancer Immunology, Immunotherapy, 2017, 66, 877-890.	4.2	126
21	Peptide vaccines in cancer — old concept revisited. Current Opinion in Immunology, 2017, 45, 1-7.	5.5	94
22	Optimization of Peptide Vaccines to Induce Robust Antitumor CD4 T-cell Responses. Cancer Immunology Research, 2017, 5, 72-83.	3.4	61
23	Cancer immunotherapy: moving forward with peptide T cell vaccines. Current Opinion in Immunology, 2017, 47, 57-63.	5.5	53
24	Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nature Communications, 2017, 8, 2122.	12.8	196
25	Effective antitumor peptide vaccines can induce severe autoimmune pathology. Oncotarget, 2017, 8, 70317-70331.	1.8	12
26	Epigenetic modification augments the immunogenicity of human leukocyte antigen G serving as a tumor antigen for T cell-based immunotherapy. Oncolmmunology, 2016, 5, e1169356.	4.6	34
27	Targeting HER-3 to elicit antitumor helper T cells against head and neck squamous cell carcinoma. Scientific Reports, 2015, 5, 16280.	3.3	22
28	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538.	4.6	119
29	Mutated BRAF Emerges as a Major Effector of Recurrence in a Murine Melanoma Model After Treatment With Immunomodulatory Agents. Molecular Therapy, 2015, 23, 845-856.	8.2	11
30	The PTEN pathway in T _{regs} is a critical driver of the suppressive tumor microenvironment. Science Advances, 2015, 1, e1500845.	10.3	167
31	Immature myeloid cells directly contribute to skin tumor development by recruiting IL-17–producing CD4+ T cells. Journal of Experimental Medicine, 2015, 212, 351-367.	8.5	65
32	STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunology, Immunotherapy, 2015, 64, 1057-1066.	4.2	81
33	An optimized peptide vaccine strategy capable of inducing multivalent CD8 ⁺ T cell responses with potent antitumor effects. Oncolmmunology, 2015, 4, e1043504.	4.6	24
34	c-Met is a novel tumor associated antigen for T-cell based immunotherapy against NK/T cell lymphoma. Oncolmmunology, 2015, 4, e976077.	4.6	35
35	A novel combinatorial cancer immunotherapy. Oncolmmunology, 2014, 3, e28440.	4.6	17
36	Combinatorial Immunotherapy of Polyinosinic–Polycytidylic Acid and Blockade of Programmed Death-Ligand 1 Induce Effective CD8 T-cell Responses against Established Tumors. Clinical Cancer Research, 2014, 20, 1223-1234.	7.0	82

ESTEBAN CELIS

#	Article	IF	CITATIONS
37	Induction of tumor-reactive T helper responses by a posttranslational modified epitope from tumor protein p53. Cancer Immunology, Immunotherapy, 2014, 63, 469-478.	4.2	25
38	BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T-cell responses. Cancer Immunology, Immunotherapy, 2013, 62, 787-799.	4.2	71
39	Transnuclear TRP1-Specific CD8 T Cells with High or Low Affinity TCRs Show Equivalent Antitumor Activity. Cancer Immunology Research, 2013, 1, 99-111.	3.4	45
40	A Potent Vaccination Strategy That Circumvents Lymphodepletion for Effective Antitumor Adoptive T-cell Therapy. Cancer Research, 2012, 72, 1986-1995.	0.9	37
41	TriVax-HPV: an improved peptide-based therapeutic vaccination strategy against human papillomavirus-induced cancers. Cancer Immunology, Immunotherapy, 2012, 61, 1307-1317.	4.2	70
42	Interferon \hat{I}^3 limits the effectiveness of melanoma peptide vaccines. Blood, 2011, 117, 135-144.	1.4	60
43	Optimized Peptide Vaccines Eliciting Extensive CD8 T-Cell Responses with Therapeutic Antitumor Effects. Cancer Research, 2009, 69, 9012-9019.	0.9	119
44	Peptide epitope identification for tumor-reactive CD4 T cells. Current Opinion in Immunology, 2008, 20, 221-227.	5.5	43
45	<i>In vivo</i> Expansion, Persistence, and Function of Peptide Vaccine–Induced CD8 T Cells Occur Independently of CD4 T Cells. Cancer Research, 2008, 68, 9892-9899.	0.9	47
46	Peptide Vaccination of Patients With Metastatic Melanoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2006, 29, 352-360.	1.3	52
47	T Helper Lymphocytes Rescue CTL from Activation-Induced Cell Death. Journal of Immunology, 2006, 177, 2862-2872.	0.8	54
48	A Phase I Trial of an HLA-A1 Restricted MAGE-3 Epitope Peptide with Incomplete Freund's Adjuvant in Patients with Resected High-Risk Melanoma. Journal of Immunotherapy, 1999, 22, 431-440.	2.4	114