Rytas J Vilgalys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1580678/publications.pdf

Version: 2024-02-01

198 papers 24,458 citations

75 h-index 7745 150 g-index

206 all docs

206 docs citations

206 times ranked 17172 citing authors

#	Article	IF	CITATIONS
1	Transcriptional acclimation and spatial differentiation characterize drought response by the ectomycorrhizal fungus <i>Suillus pungens</i> New Phytologist, 2022, 234, 1910-1913.	7.3	7
2	Phylogenetic conservatism of mycoparasitism and its contribution to pathogen antagonism. Molecular Ecology, 2022, 31, 3018-3030.	3.9	7
3	ACORN Review: NPK fertilizer use in loblolly pine plantations: Who are we really feeding?. Forest Ecology and Management, 2022, 520, 120393.	3.2	7
4	Co-invading ectomycorrhizal fungal succession in pine-invaded mountain grasslands. Fungal Ecology, 2022, 60, 101176.	1.6	3
5	Comparative genomics reveals dynamic genome evolution in host specialist ectomycorrhizal fungi. New Phytologist, 2021, 230, 774-792.	7.3	37
6	Phylogenetic diversity of 200+ isolates of the ectomycorrhizal fungus Cenococcum geophilum associated with Populus trichocarpa soils in the Pacific Northwest, USA and comparison to globally distributed representatives. PLoS ONE, 2021, 16, e0231367.	2.5	7
7	Hybrid Genome Assembly and Gene Repertoire of the Root Endophyte <i>Clitopilus hobsonii</i> QYL-10 (Entolomataceae, Agaricales, Basidiomycetes). Molecular Plant-Microbe Interactions, 2021, 34, 711-714.	2.6	7
8	Vegetation and microbes interact to preserve carbon in many wooded peatlands. Communications Earth $\&$ Environment, 2021, 2, .	6.8	21
9	Response of fungal communities to fire in a subtropical peatland. Plant and Soil, 2021, 466, 525-543.	3.7	6
10	Heterospecific Neighbor Plants Impact Root Microbiome Diversity and Molecular Function of Root Fungi. Frontiers in Microbiology, 2021, 12, 680267.	3.5	3
11	Subsidized or stressed? Shifts in freshwater benthic microbial metagenomics along a gradient of alkaline coal mine drainage. Limnology and Oceanography, 2020, 65, S277.	3.1	7
12	Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 2020, 11, 5125.	12.8	258
13	Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments for Connecting Plant and Fungal Traits to Their Ecosystem Consequences. Frontiers in Forests and Global Change, 2020, 3, .	2.3	20
14	Fungal heavy metal adaptation through single nucleotide polymorphisms and copyâ€number variation. Molecular Ecology, 2020, 29, 4157-4169.	3.9	24
15	Mortierella elongata Increases Plant Biomass among Non-Leguminous Crop Species. Agronomy, 2020, 10, 754.	3.0	43
16	Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. Journal of Biogeography, 2020, 47, 772-782.	3.0	42
17	Draft Genome Sequence Resource for Blumeriella jaapii, the Cherry Leaf Spot Pathogen. Phytopathology, 2020, 110, 1507-1510.	2.2	1
18	Investigating the mycobiome of the Holcomb Creosote Superfund Site. Chemosphere, 2020, 252, 126208.	8.2	1

#	Article	IF	Citations
19	Microfluidics and Metabolomics Reveal Symbiotic Bacterial–Fungal Interactions Between Mortierella elongata and Burkholderia Include Metabolite Exchange. Frontiers in Microbiology, 2019, 10, 2163.	3.5	37
20	Fungal Endophytes of <i>Populus trichocarpa </i> Alter Host Phenotype, Gene Expression, and Rhizobiome Composition. Molecular Plant-Microbe Interactions, 2019, 32, 853-864.	2.6	52
21	Spatiotemporal Transformation in the Alkaloid Profile of <i>Pinus</i> Roots in Response to Mycorrhization. Journal of Natural Products, 2019, 82, 1382-1386.	3.0	4
22	Fungal-Bacterial Networks in the Populus Rhizobiome Are Impacted by Soil Properties and Host Genotype. Frontiers in Microbiology, 2019, 10, 481.	3.5	71
23	Suilloid fungi as global drivers of pine invasions. New Phytologist, 2019, 222, 714-725.	7.3	97
24	Phylogenetic and Phylogenomic Definition of <i>Rhizopus</i> Species. G3: Genes, Genomes, Genetics, 2018, 8, 2007-2018.	1.8	47
25	Phylogenetic taxon definitions for Fungi, Dikarya, Ascomycota and Basidiomycota. IMA Fungus, 2018, 9, 291-298.	3.8	26
26	Emission Factors of Microbial Volatile Organic Compounds from Environmental Bacteria and Fungi. Environmental Science & Enviro	10.0	81
27	<i>Atractiella rhizophila</i> , sp. nov., an endorrhizal fungus isolated from the <i>Populus</i> root microbiome. Mycologia, 2017, 109, 18-26.	1.9	43
28	Survey of corticioid fungi in North American pinaceous forests reveals hyperdiversity, underpopulated sequence databases, and species that are potentially ectomycorrhizal. Mycologia, 2017, 109, 115-127.	1.9	31
29	Characterization of a novel, ubiquitous fungal endophyte from the rhizosphere and root endosphere of Populus trees. Fungal Ecology, 2017, 27, 78-86.	1.6	27
30	Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree <i>Dicymbe corymbosa</i> . New Phytologist, 2017, 215, 443-453.	7.3	23
31	Scattered far and wide: A broadly distributed temperate dune grass finds familiar fungal root associates in its invasive range. Soil Biology and Biochemistry, 2017, 112, 177-190.	8.8	8
32	Integrated proteomics and metabolomics suggests symbiotic metabolism and multimodal regulation in a fungalâ€endobacterial system. Environmental Microbiology, 2017, 19, 1041-1053.	3.8	38
33	Continentalâ€level population differentiation and environmental adaptation in the mushroom <i><scp>S</scp>uillus brevipes</i> . Molecular Ecology, 2017, 26, 2063-2076.	3.9	55
34	Hijacked: Co-option of host behavior by entomophthoralean fungi. PLoS Pathogens, 2017, 13, e1006274.	4.7	26
35	Isolating a functionally relevant guild of fungi from the root microbiome of Populus. Fungal Ecology, 2016, 22, 35-42.	1.6	88
36	A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 2016, 108, 1028-1046.	1.9	1,092

#	Article	IF	CITATIONS
37	A native and an invasive dune grass share similar, patchily distributed, root-associated fungal communities. Fungal Ecology, 2016, 23, 141-155.	1.6	14
38	Production and turnover of ectomycorrhizal extramatrical mycelial biomass and necromass under elevated CO ₂ and nitrogen fertilization. New Phytologist, 2016, 211, 874-885.	7.3	60
39	A New Perspective on Sustainable Soil Remediationâ€"Case Study Suggests Novel Fungal Genera Could Facilitate ⟨i⟩in situ⟨ i⟩ Biodegradation of Hazardous Contaminants. Remediation, 2016, 26, 59-72.	2.4	18
40	Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales. Fungal Biology, 2016, 120, 603-619.	2.5	56
41	Metatranscriptomic Study of Common and Host-Specific Patterns of Gene Expression between Pines and Their Symbiotic Ectomycorrhizal Fungi in the Genus Suillus. PLoS Genetics, 2016, 12, e1006348.	3. 5	82
42	A continental view of pineâ€associated ectomycorrhizal fungal spore banks: a quiescent functional guild with a strong biogeographic pattern. New Phytologist, 2015, 205, 1619-1631.	7.3	126
43	Prospects and challenges for fungal metatranscriptomics of complex communities. Fungal Ecology, 2015, 14, 133-137.	1.6	44
44	Genetic isolation between two recently diverged populations of a symbiotic fungus. Molecular Ecology, 2015, 24, 2747-2758.	3.9	100
45	Draft Genome Sequence of the Plant-Pathogenic Soil Fungus Rhizoctonia solani Anastomosis Group 3 Strain Rhs1AP. Genome Announcements, 2014, 2, .	0.8	49
46	Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales). Fungal Diversity, 2014, 64, 1-99.	12.3	108
47	Endemism and functional convergence across the North American soil mycobiome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6341-6346.	7.1	482
48	Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen <i>Rhizoctonia solani</i> AG-3. FEMS Microbiology Letters, 2014, 352, 165-173.	1.8	143
49	Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Molecular Ecology, 2014, 23, 3356-3370.	3.9	285
50	Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biology and Biochemistry, 2013, 57, 282-291.	8.8	203
51	Nectar Inhabiting Yeasts in Virginian Populations of Silene latifolia (Caryophyllaceae) and Coflowering Species. American Midland Naturalist, 2013, 169, 235-258.	0.4	30
52	Pathogen regulation of plant diversity via effective specialization. Trends in Ecology and Evolution, 2013, 28, 705-711.	8.7	80
53	New species of (i) Xerocomus (i) (Boletales) from the Guiana Shield, with notes on their mycorrhizal status and fruiting occurrence. Mycologia, 2013, 105, 422-435.	1.9	18
54	New North American truffles (<i>Tuber</i> spp.) and their ectomycorrhizal associations. Mycologia, 2013, 105, 194-209.	1,9	34

#	Article	IF	CITATIONS
55	A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees. PLoS ONE, 2013, 8, e76382.	2.5	315
56	Historical Biogeography and Diversification of Truffles in the Tuberaceae and Their Newly Identified Southern Hemisphere Sister Lineage. PLoS ONE, 2013, 8, e52765.	2.5	175
57	Sequential Utilization of Hosts from Different Fly Families by Genetically Distinct, Sympatric Populations within the Entomophthora muscae Species Complex. PLoS ONE, 2013, 8, e71168.	2.5	22
58	The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea. PLoS ONE, 2013, 8, e55160.	2.5	71
59	Changes in Fungal Community Composition in Response to Elevated Atmospheric CO2 and Nitrogen Fertilization Varies with Soil Horizon. Frontiers in Microbiology, 2013, 4, 78.	3.5	97
60	Evaluating the impacts of multiple generalist fungal pathogens on temperate tree seedling survival. Ecology, 2012, 93, 511-520.	3.2	148
61	Membranomyces species are common ectomycorrhizal symbionts in Northern Hemisphere forests. Mycorrhiza, 2012, 22, 577-581.	2.8	9
62	Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodiversity and Conservation, 2012, 21, 2195-2220.	2.6	94
63	New species of <i>Clavulina</i> (Cantharellales, Basidiomycota) with resupinate and effused basidiomata from the Guiana Shield. Mycologia, 2012, 104, 547-556.	1.9	31
64	New species and distribution records for Clavulina (Cantharellales, Basidiomycota) from the Guiana Shield, with a key to the lowland neotropical taxa. Fungal Biology, 2012, 116, 1263-1274.	2.5	26
65	Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecology, 2012, 5, 270-273.	1.6	41
66	Molecular phylogeny of the Entomophthoromycota. Molecular Phylogenetics and Evolution, 2012, 65, 682-694.	2.7	83
67	Assessing ectomycorrhizal fungal spore banks of truffle producing soils with pecan seedling trap-plants. Plant and Soil, 2012, 356, 357-366.	3.7	31
68	Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide. Environmental Microbiology, 2012, 14, 1145-1158.	3.8	79
69	The Asian black truffle Tuber indicum can form ectomycorrhizas with North American host plants and complete its life cycle in non-native soils. Fungal Ecology, 2011, 4, 83-93.	1.6	63
70	Molecular phylogeny of the Blastocladiomycota (Fungi) based on nuclear ribosomal DNA. Fungal Biology, 2011, 115, 381-392.	2.5	45
71	Responses of soil cellulolytic fungal communities to elevated atmospheric CO ₂ are complex and variable across five ecosystems. Environmental Microbiology, 2011, 13, 2778-2793.	3.8	56
72	Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytologist, 2011, 192, 699-712.	7. 3	133

#	Article	lF	Citations
73	Ectomycorrhizal fungal diversity in orchards of cultivated pecan (Carya illinoinensis; Juglandaceae). Mycorrhiza, 2011, 21, 601-612.	2.8	56
74	Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types. Applied and Environmental Microbiology, 2011, 77, 5934-5944.	3.1	524
75	Identification of fungi associated with municipal compost using DNA-based techniques. Bioresource Technology, 2010, 101, 1021-1027.	9.6	87
76	A global metaâ€analysis of <i>Tuber</i> ITS rDNA sequences: species diversity, host associations and longâ€distance dispersal. Molecular Ecology, 2010, 19, 4994-5008.	3.9	185
77	Improved resolution of major clades within <i>Tuber</i> and taxonomy of species within the <i>Tuber gibbosum</i> complex. Mycologia, 2010, 102, 1042-1057.	1.9	56
78	Structure, Function, and Phylogeny of the Mating Locus in the Rhizopus oryzae Complex. PLoS ONE, 2010, 5, e15273.	2.5	72
79	Rapid Global Expansion of the Fungal Disease Chytridiomycosis into Declining and Healthy Amphibian Populations. PLoS Pathogens, 2009, 5, e1000458.	4.7	186
80	Phylogeny and Phenotypic Characterization of Pathogenic < i>Cryptococcus < /i>Species and Closely Related Saprobic Taxa in the Tremellales. Eukaryotic Cell, 2009, 8, 353-361.	3.4	95
81	Expression of genes involved in symbiotic carbon and nitrogen transport in Pinus taeda mycorrhizal roots exposed to CO2 enrichment and nitrogen fertilization. Mycorrhiza, 2009, 19, 469-479.	2.8	14
82	The search for the fungal tree of life. Trends in Microbiology, 2009, 17, 488-497.	7.7	139
83	Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Molecular Phylogenetics and Evolution, 2008, 46, 635-644.	2.7	95
84	Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17842-17847.	7.1	387
85	Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia, 2007, 99, 185-206.	1.9	178
86	Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia, 2007, 99, 185-206.	1.9	357
87	Molecular phylogeny suggests a single origin of insect symbiosis in the Pucciniomycetes with support for some relationships within the genus <i>Septobasidium</i> . American Journal of Botany, 2007, 94, 1515-1526.	1.7	38
88	Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO ₂ and nitrogen fertilization. New Phytologist, 2007, 176, 164-174.	7.3	135
89	Phylogeography of the Solanaceae-infecting Basidiomycota fungus Rhizoctonia solani AG-3 based on sequence analysis of two nuclear DNA loci. BMC Evolutionary Biology, 2007, 7, 163.	3.2	35
90	A higher-level phylogenetic classification of the Fungi. Mycological Research, 2007, 111, 509-547.	2.5	1,994

#	Article	IF	Citations
91	(1742) Proposal to conserve the name <i>Lyophyllum</i> with a conserved type (<i>Basidiomycota</i>). Taxon, 2006, 55, 1034-1036.	0.7	5
92	CO2-ENRICHMENT AND NUTRIENT AVAILABILITY ALTER ECTOMYCORRHIZAL FUNGAL COMMUNITIES. Ecology, 2006, 87, 2278-2287.	3.2	134
93	The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia, 2006, 98, 937-948.	1.9	89
94	Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia, 2006, 98, 982-995.	1.9	268
95	A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia, 2006, 98, 860-871.	1.9	224
96	Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist, 2006, 171, 847-860.	7.3	161
97	Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 2006, 443, 818-822.	27.8	1,625
98	Phylogenetic utility of indels within ribosomal DNA and \hat{l}^2 -tubulin sequences from fungi in the Rhizoctonia solani species complex. Molecular Phylogenetics and Evolution, 2006, 40, 459-470.	2.7	73
99	Evolution of the Bipolar Mating System of the Mushroom Coprinellus disseminatus From Its Tetrapolar Ancestors Involves Loss of Mating-Type-Specific Pheromone Receptor Function. Genetics, 2006, 172, 1877-1891.	2.9	115
100	Multilocus Sequence Typing Reveals Three Genetic Subpopulations of Cryptococcus neoformans var. grubii (Serotype A), Including a Unique Population in Botswana. Genetics, 2006, 172, 2223-2238.	2.9	233
101	The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia, 2006, 98, 937-948.	1.9	135
102	Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia, 2006, 98, 982-995.	1.9	449
103	A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia, 2006, 98, 860-871.	1.9	357
104	Notes on Agaricus section Duploannulati using molecular and morphological data. Mycological Research, 2005, 109, 729-740.	2.5	13
105	Comparative Analysis of Environmental and Clinical Populations of Cryptococcus neoformans. Journal of Clinical Microbiology, 2005, 43, 556-564.	3.9	135
106	The Crepidotaceae (Basidiomycota, Agaricales): phylogeny and taxonomy of the genera and revision of the family based on molecular evidence. American Journal of Botany, 2005, 92, 74-82.	1.7	31
107	Fungal Community Analysis by Large-Scale Sequencing of Environmental Samples. Applied and Environmental Microbiology, 2005, 71, 5544-5550.	3.1	7 95
108	Assessment of Soil Microbial Community Structure by Use of Taxon-Specific Quantitative PCR Assays. Applied and Environmental Microbiology, 2005, 71, 4117-4120.	3.1	1,227

#	Article	IF	Citations
109	Quantitative analyses of nitrogen cycling genes in soils. Pedobiologia, 2005, 49, 665-672.	1.2	87
110	A Genetic Linkage Map of Cryptococcus neoformans variety neoformans Serotype D (Filobasidiella) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
111	Molecular phylogeny, biogeography and speciation of the mushroom species Pleurotus cystidiosus and allied taxa. Microbiology (United Kingdom), 2004, 150, 715-726.	1.8	78
112	Phylogeny and Evolution of Medical Species of Candida and Related Taxa: a Multigenic Analysis. Journal of Clinical Microbiology, 2004, 42, 5624-5635.	3.9	110
113	Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Molecular Ecology, 2004, 13, 3367-3378.	3.9	127
114	Evolution of the gene encoding mitochondrial intermediate peptidase and its cosegregation with the A mating-type locus of mushroom fungi. Fungal Genetics and Biology, 2004, 41, 381-390.	2.1	51
115	The genetic structure and diversity of the A and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genetics and Biology, 2004, 41, 813-825.	2.1	75
116	Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany, 2004, 91, 1446-1480.	1.7	718
117	Toward a Better Understanding of the Infrageneric Relationships in Cortinarius (Agaricales,) Tj ETQq1 1 0.784314	4 rgBT /Ov	erlock 10 Tf
118	Toward a better understanding of the infrageneric relationships in <i>Cortinarius</i> (Agaricales,) Tj ETQq0 0 0 rş	gBT /Overl	ock 10 Tf 50
119	Toward a better understanding of the infrageneric relationships in Cortinarius (Agaricales,) Tj ETQq $1\ 1\ 0.784314$	rgBJ /Ove	rlock 10 Tf 5
120	Revisiting the rDNA sequence diversity of a natural population of the arbuscular mycorrhizal fungus Acaulospora colossica. Mycorrhiza, 2003, 13, 227-231.	2.8	11
121	Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Molecular Ecology, 2003, 12, 395-403.	3.9	244
122	Taxonomic misidentification in public DNA databases. New Phytologist, 2003, 160, 4-5.	7.3	214
123	Endophytic <i>Xylaria</i> (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. American Journal of Botany, 2003, 90, 1661-1667.	1.7	120
124	Evidence of Sexual Recombination among Cryptococcus neoformans Serotype A Isolates in Sub-Saharan Africa. Eukaryotic Cell, 2003, 2, 1162-1168.	3.4	153
125	Detecting Migrants in Populations of Rhizoctonia solani Anastomosis Group 3 from Potato in North Carolina Using Multilocus Genotype Probabilities. Phytopathology, 2003, 93, 610-615.	2.2	18
126	Genetic Structure of Populations of Rhizoctonia solani AG-3 on Potato in Eastern North Carolina. Mycologia, 2002, 94, 450.	1.9	21

#	Article	IF	CITATIONS
127	Phylogeny of <i>Rozites</i> , <i>Cuphocybe</i> and <i>Rapacea</i> inferred from ITS and LSU rDNA sequences. Mycologia, 2002, 94, 620-629.	1.9	37
128	Genetic diversity of <i>Rhizoctonia solani </i> AG-3 from potato and tobacco in North Carolina. Mycologia, 2002, 94, 437-449.	1.9	50
129	Genetic structure of populations of <i>Rhizoctonia solani </i> AG-3 on potato in eastern North Carolina. Mycologia, 2002, 94, 450-460.	1.9	31
130	Ectomycorrhizal fungi and their leguminous hosts in the Pakaraima Mountains of Guyana. Mycological Research, 2002, 106, 515-531.	2.5	101
131	Phylogenetic analyses of the Lyophylleae (Agaricales, Basidiomycota) based on nuclear and mitochondrial rDNA sequences. Mycological Research, 2002, 106, 1043-1059.	2.5	93
132	One hundred and seventeen clades of euagarics. Molecular Phylogenetics and Evolution, 2002, 23, 357-400.	2.7	583
133	Multiple origins of hybrid strains of Cryptococcus neoformans with serotype AD. Microbiology (United Kingdom), 2002, 148, 203-212.	1.8	83
134	Genetic diversity of Rhizoctonia solani AG-3 from potato and tobacco in North Carolina. Mycologia, 2002, 94, 437-49.	1.9	7
135	Genetic structure of populations of Rhizoctonia solani AG-3 on potato in eastern North Carolina. Mycologia, 2002, 94, 450-60.	1.9	9
136	Coprinus Pers. and the disposition of Coprinus species sensu lato. Taxon, 2001, 50, 203-241.	0.7	145
137	(1473–1474) Proposals to conserve the name Psathyrella (Fr.) Quél, with a conserved type and to reject the name Pselliophora P. Karst. (Basidiomycetes: Psathyrellaceae). Taxon, 2001, 50, 275-277.	0.7	7
138	Ribosomal DNA systematics of <i>Ceratobasidium</i> and <i>Thanatephorus</i> with <i>Rhizoctonia</i> anamorphs. Mycologia, 2001, 93, 1138-1150.	1.9	126
139	The chromosomal region containing pab-1, mip, and the A mating type locus of the secondarily homothallic homobasidiomycete Coprinus bilanatus. Current Genetics, 2001, 39, 16-24.	1.7	27
140	Assessing biogeographic relationships between North American and Chinese macrofungi. Journal of Biogeography, 2001, 28, 271-281.	3.0	62
141	Abundance and diversity of <i>Schizophyllum commune</i> spore clouds in the Caribbean detected by selective sampling. Molecular Ecology, 2001, 10, 471-479.	3.9	60
142	Infragenic phylogeny of Collybia s. str. based on sequences of ribosomal ITS and LSU regions. Mycological Research, 2001, 105, 164-172.	2.5	29
143	Dynamic and Heterogeneous Mutations to Fluconazole Resistance in Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy, 2001, 45, 420-427.	3.2	32
144	Multiple origins of sequestrate fungi related to Cortinarius (Cortinariaceae). American Journal of Botany, 2001, 88, 2168-2179.	1.7	183

#	Article	IF	Citations
145	Ribosomal DNA Systematics of Ceratobasidium and Thanatephorus with Rhizoctonia anamorphs. Mycologia, 2001, 93, 1138.	1.9	109
146	Polymorphism at the Ribosomal DNA Spacers and Its Relation to Breeding Structure of the Widespread Mushroom <i>Schizophyllum commune</i>). Genetics, 2001, 157, 149-161.	2.9	109
147	Variation in Modes and Rates of Evolution in Nuclear and Mitochondrial Ribosomal DNA in the Mushroom Genus Amanita (Agaricales, Basidiomycota): Phylogenetic Implications. Molecular Phylogenetics and Evolution, 2000, 16, 48-63.	2.7	42
148	Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungusCryptococcus neoformans. Molecular Ecology, 2000, 9, 1471-1481.	3.9	261
149	Mating compatibility and phylogeography in Pleurotus tuberregium. Mycological Research, 2000, 104, 732-737.	2.5	32
150	Title is missing!. World Journal of Microbiology and Biotechnology, 2000, 16, 431-435.	3.6	21
151	Phylogenetic Relationships of Agaric Fungi Based on Nuclear Large Subunit Ribosomal DNA Sequences. Systematic Biology, 2000, 49, 278-305.	5.6	395
152	Uniparental Mitochondrial Transmission in Sexual Crosses in Cryptococcus neoformans. Current Microbiology, 2000, 40, 269-273.	2.2	81
153	Phylogenetic analyses and the distribution of nematophagy support a monophyletic Pleurotaceae within the polyphyletic pleurotoid-lentinoid fungi. Mycologia, 2000, 92, 241-252.	1.9	67
154	High levels of variation in ribosomal DNA sequences within and among spores of a natural population of the arbuscular mycorrhizal fungusAcaulospora colossica. Mycologia, 2000, 92, 259-268.	1.9	54
155	High Levels of Variation in Ribosomal DNA Sequences within and among Spores of a Natural Population of the Arbuscular Mycorrhizal Fungus Acaulospora colossica. Mycologia, 2000, 92, 259.	1.9	52
156	Phylogenetic Analyses and the Distribution of Nematophagy Support a Monophyletic Pleurotaceae within the Polyphyletic Pleurotoid-Lentinoid Fungi. Mycologia, 2000, 92, 241.	1.9	58
157	Development and Characterization of a Genetic Linkage Map of Cryptococcus neoformans var. neoformans Using Amplified Fragment Length Polymorphisms and Other Markers. Fungal Genetics and Biology, 2000, 31, 189-203.	2.1	46
158	Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics. Canadian Journal of Botany, 2000, 78, 336-350.	1.1	76
159	Rhacophyllus and Zerovaemyces —teleomorphs or anamorphs?. Taxon, 2000, 49, 789-798.	0.7	10
160	Clonal and Spontaneous Origins of Fluconazole Resistance in Candida albicans. Journal of Clinical Microbiology, 2000, 38, 1214-1220.	3.9	107
161	Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics. Canadian Journal of Botany, 2000, 78, 336-350.	1.1	124
162	Molecular phylogeny of <i>Amanita</i> based on large-subunit ribosomal DNA sequences: implications for taxonomy and character evolution. Mycologia, 1999, 91, 610-618.	1.9	66

#	Article	IF	CITATIONS
163	PCR–restriction fragment length polymorphism (RFLP) analyses reveal both extensive clonality and local genetic differences inCandidaalbicans. Molecular Ecology, 1999, 8, 59-73.	3.9	80
164	Phylogenetic Relationships in the Mushroom Genus Coprinus and Dark-Spored Allies Based on Sequence Data from the Nuclear Gene Coding for the Large Ribosomal Subunit RNA: Divergent Domains, Outgroups, and Monophyly. Molecular Phylogenetics and Evolution, 1999, 13, 1-19.	2.7	243
165	Molecular Phylogeny of Amanita Based on Large-Subunit Ribosomal DNA Sequences: Implications for Taxonomy and Character Evolution. Mycologia, 1999, 91, 610.	1.9	32
166	Genetic Structure of Typical and Atypical Populations of Candida albicans from Africa. Fungal Genetics and Biology, 1999, 28, 107-125.	2.1	79
167	EVIDENCE FOR LIMITED INTERCONTINENTAL GENE FLOW IN THE COSMOPOLITAN MUSHROOM, <i>SCHIZOPHYLLUM COMMUNE</i> . Evolution; International Journal of Organic Evolution, 1999, 53, 1665-1677.	2.3	96
168	Lack of Genetic Differentiation between Two Geographically Diverse Samples of <i>Candida albicans</i> Isolated from Patients Infected with Human Immunodeficiency Virus. Journal of Bacteriology, 1999, 181, 1369-1373.	2.2	39
169	Phylogenetic Systematics of Lepiota Sensu Lato Based on Nuclear Large Subunit rDNA Evidence. Mycologia, 1998, 90, 971.	1.9	31
170	Phylogenetic systematics of <i>Lepiota </i> sensu lato based on nuclear large subunit rDNA evidence. Mycologia, 1998, 90, 971-979.	1.9	54
171	Colony Size Can Be Used To Determine the MIC of Fluconazole for Pathogenic Yeasts. Journal of Clinical Microbiology, 1998, 36, 2383-2385.	3.9	15
172	Response from Vilgalys et al. Trends in Microbiology, 1997, 5, 254-257.	7.7	20
173	Phylogenetic Relationships of the Liverworts (Hepaticae), a Basal Embryophyte Lineage, Inferred from Nucleotide Sequence Data of the Chloroplast GenerbcL. Molecular Phylogenetics and Evolution, 1997, 7, 377-393.	2.7	178
174	Molecular Analysis of Ribosomal RNA Genes in Rhizoctonia Fungi., 1996,, 81-86.		11
175	Integration of morphological and molecular data sets in estimating fungal phytogenies. Canadian Journal of Botany, 1995, 73, 649-659.	1.1	56
176	Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia, 1994, 86, 96-107.	1.9	157
177	Assessment of species distributions in Pleurotus based on trapping of airborne basidiospores. Mycologia, 1994, 86, 270-274.	1.9	29
178	Phylogenetic Relationships among Coprinoid Taxa and Allies Based on Data from Restriction Site Mapping of Nuclear rDNA. Mycologia, 1994, 86, 96.	1.9	88
179	Assessment of Species Distributions in Pleurotus Based on Trapping of Airborne Basidiospores. Mycologia, 1994, 86, 270.	1.9	19
180	Phylogenetic Relationships of Lentinus (Basidiomycotina) Inferred from Molecular and Morphological Characters. Systematic Botany, 1993, 18, 409.	0.5	101

#	Article	IF	Citations
181	Intersterility groups in the Pleurotus ostreatus complex from the continental United States and adjacent Canada. Canadian Journal of Botany, 1993, 71, 113-128.	1.1	52
182	Systematics of Lyophyllum Section Difformia Based on Evidence from Culture Studies and Ribosomal DNA Sequences. Mycologia, 1993, 85, 788.	1.9	36
183	Systematics of Lyophyllum Section Difformia Based on Evidence from Culture Studies and Ribosomal DNA Sequences. Mycologia, 1993, 85, 788-794.	1.9	59
184	A Molecular Approach to the Phylogeny of Bryophytes: Cladistic Analysis of Chloroplast-Encoded 16S and 23S Ribosomal RNA Genes. Bryologist, 1992, 95, 172.	0.6	47
185	Spatial Distribution and Genetic Relationships Among Individuals in a Natural Population of the Oyster Mushroom <i>Pleurotus Ostreatus</i>). Mycologia, 1992, 84, 173-182.	1.9	57
186	Evolutionary relationships within the fungi: Analyses of nuclear small subunit rRNA sequences. Molecular Phylogenetics and Evolution, 1992, 1, 231-241.	2.7	302
187	Evolutionary Relationships of <i>Lentinus</i> to the Polyporaceae: Evidence from Restriction Analysis of Enzymatically Amplified Ribosomal Dna. Mycologia, 1991, 83, 425-439.	1.9	52
188	Speciation and Species Concepts in the Collybia Dryophila Complex. Mycologia, 1991, 83, 758-773.	1.9	50
189	RIBOSOMAL DNA LENGTH POLYMORPHISMS WITHIN POPULATIONS OF XYLARIA MAGNOLIAE (ASCOMYCOTINA). American Journal of Botany, 1991, 78, 1603-1607.	1.7	8
190	Evolutionary Relationships of Lentinus to the Polyporaceae: Evidence from Restriction Analysis of Enzymatically Amplified Ribosomal DNA. Mycologia, 1991, 83, 425.	1.9	36
191	Speciation and Species Concepts in the Collybia dryophila Complex. Mycologia, 1991, 83, 758.	1.9	37
192	Ribosomal DNA Length Polymorphisms within Populations of Xylaria magnoliae (Ascomycotina). American Journal of Botany, 1991, 78, 1603.	1.7	6
193	Ribosomal DNA Restriction Fragment Length Polymorphisms inRhizoctonia solani. Phytopathology, 1990, 80, 151.	2.2	115
194	Genetic Relatedness Among Anastomosis Groups inRhizoctoniaas Measured by DNA/DNA Hybridization. Phytopathology, 1988, 78, 698.	2,2	59
195	PHENETIC AND CLADISTIC RELATIONSHIPS IN COLLYBIA SECT. LEVIPEDES (FUNGI: BASIDIOMYCETES). Taxon, 1986, 35, 225-233.	0.7	14
196	Biological Species in the <i>Collybia Dryophila </i> Group in North America. Mycologia, 1983, 75, 707-722.	1.9	23
197	Amphibian Chytridiomycosis as an Emerging Infectious Disease of Wildlife: What Can We Learn from the Earliest Diverging Fungi?., 0,, 271-278.		1
198	Sex in the Rest: Mysterious Mating in the Chytridiomycota and Zygomycota., 0,, 405-418.		7