List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1579162/publications.pdf Version: 2024-02-01

DETED D KINNV

#	Article	IF	CITATIONS
1	Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 2003, 53, 469-500.	4.8	2,521
2	Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 2003, 122, 85-109.	2.7	1,020
3	Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contributions To Mineralogy and Petrology, 1998, 133, 1-11.	3.1	800
4	The breakup of Rodinia: did it start with a mantle plume beneath South China?. Earth and Planetary Science Letters, 1999, 173, 171-181.	4.4	739
5	Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 2002, 30, 163.	4.4	723
6	Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 2006, 439, 580-583.	27.8	640
7	U–Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Research, 2002, 113, 135-154.	2.7	492
8	lon microprobe identification of 4,100–4,200 Myr-old terrestrial zircons. Nature, 1983, 304, 616-618.	27.8	460
9	The Itsaq Gneiss Complex of southern West Greenland; the world's most extensive record of early crustal evolution (3900-3600 Ma). Precambrian Research, 1996, 78, 1-39.	2.7	450
10	Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 2001, 29, 211.	4.4	448
11	The Earth's oldest known crust: A geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica Et Cosmochimica Acta, 1992, 56, 1281-1300.	3.9	381
12	Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 2003, 53, 327-341.	4.8	354
13	Identifying Accessory Mineral Saturation during Differentiation in Granitoid Magmas: an Integrated Approach. Journal of Petrology, 2000, 41, 1365-1396.	2.8	331
14	The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth and Planetary Science Letters, 2000, 181, 327-340.	4.4	294
15	Geochronological constraints for a two-stage history of the Albany–Fraser Orogen, Western Australia. Precambrian Research, 2000, 102, 155-183.	2.7	238
16	The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics, 1999, 310, 1-35.	2.2	212
17	Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic. Geology, 2010, 38, 99-102.	4.4	199
18	SHRIMP U–Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India. Gondwana Research, 2009, 16, 27-36.	6.0	198

#	Article	IF	CITATIONS
19	3820 Ma zircons from a tonalitic Armîsoq gneiss in the Godthåb district of Southern West Greenland. Earth and Planetary Science Letters, 1986, 79, 337-347.	4.4	184
20	The deep crust beneath island arcs: Inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia. Earth and Planetary Science Letters, 2007, 258, 269-282.	4.4	169
21	The age and Pb loss behaviour of zircons from the Isua supracrustal belt as determined by ion microprobe. Earth and Planetary Science Letters, 1986, 80, 71-81.	4.4	165
22	Svecofennian detrital zircon ages—implications for the Precambrian evolution of the Baltic Shield. Precambrian Research, 1993, 64, 109-130.	2.7	148
23	Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia. Australian Journal of Earth Sciences, 1990, 37, 51-69.	1.0	147
24	Timing of late Archaean terrane assembly, crustal thickening and granite emplacement in the Nuuk region, southern West Greenland. Earth and Planetary Science Letters, 1996, 142, 353-365.	4.4	134
25	A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochimica Et Cosmochimica Acta, 1991, 55, 849-859.	3.9	132
26	Early archaean zircon ages from orthogneisses and anorthosites at Mount Narryer, Western Australia. Precambrian Research, 1988, 38, 325-341.	2.7	131
27	Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands. Antarctic Science, 1993, 5, 193-206.	0.9	127
28	Crystal-plastic deformation of zircon: A defect in the assumption of chemical robustness. Geology, 2006, 34, 257.	4.4	122
29	Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica. Terra Nova, 1997, 9, 47-51.	2.1	115
30	Laurentian provenance and an intracratonic tectonic setting for the Moine Supergroup, Scotland, constrained by detrital zircons from the Loch Eil and Glen Urquhart successions. Journal of the Geological Society, 2004, 161, 861-874.	2.1	114
31	A reappraisal of the Lewisian Gneiss Complex: geochronological evidence for its tectonic assembly from disparate terranes in the Proterozoic. Contributions To Mineralogy and Petrology, 2001, 142, 198-218.	3.1	110
32	SHRIMP U-Pb zircon geochronology of the Narryer Gneiss Complex, Western Australia. Precambrian Research, 1991, 52, 275-300.	2.7	105
33	Anatomy of an Early Archean gneiss complex: 3900 to 3600 Ma crustal evolution in southern West Greenland. Geology, 1993, 21, 415.	4.4	104
34	U-Pb isotopic evidence for the accretion of different crustal blocks to form the Lewisian Complex of northwest Scotland. Contributions To Mineralogy and Petrology, 1997, 129, 326-340.	3.1	103
35	New evidence for protolith ages of Lewisian granulites, northwest Scotland. Geology, 1995, 23, 1027.	4.4	102
36	Provenance of the Moine Supergroup of NW Scotland: evidence from geochronology of detrital and inherited zircons from (meta)sedimentary rocks, granites and migmatites. Journal of the Geological Society, 2003, 160, 247-257.	2.1	102

#	Article	IF	CITATIONS
37	U–Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides. Journal of the Geological Society, 2000, 157, 1031-1048.	2.1	100
38	Proposal for a terrane-based nomenclature for the Lewisian Gneiss Complex of NW Scotland. Journal of the Geological Society, 2005, 162, 175-186.	2.1	100
39	U–Pb geochronology of regional migmatites in East Sutherland, Scotland: evidence for crustal melting during the Caledonian orogeny. Journal of the Geological Society, 1999, 156, 1143-1152.	2.1	98
40	High- granulites and polymetamorphism in the southern Arunta Region, central Australia: Evidence for a 1.64Ga accretional event. Precambrian Research, 2005, 142, 1-27.	2.7	91
41	U-Pb zircon geochronological evidence for Neoproterozoic events in the Glenfinnan Group (Moine) Tj ETQq1 1 Mineralogy and Petrology, 1997, 128, 101-113.	0.784314 t 3.1	rgBT /Overloo 90
42	Bulk chemical control on metamorphic monazite growth in pelitic schists and implications for U-Pb age data. Journal of Metamorphic Geology, 2005, 23, 261-277.	3.4	89
43	U–Pb geochronology of deformed metagranites in central Sutherland, Scotland: evidence for widespread late Silurian metamorphism and ductile deformation of the Moine Supergroup during the Caledonian orogeny. Journal of the Geological Society, 2003, 160, 259-269.	2.1	83
44	Three metamorphic events recorded in a single garnet: Integrated phase modelling, <i>in situ</i> LAâ€ICPMS and SIMS geochronology from the Moine Supergroup, NW Scotland. Journal of Metamorphic Geology, 2010, 28, 249-267.	3.4	81
45	Charge contrast imaging of geological materials in the environmental scanning electron microscope. American Mineralogist, 2000, 85, 1784-1794.	1.9	79
46	Relationship among titanium, rare earth elements, U–Pb ages and deformation microstructures in zircon: Implications for Ti-in-zircon thermometry. Chemical Geology, 2011, 280, 33-46.	3.3	79
47	Zirconology of the Meeberrie gneiss, Yilgarn Craton, Western Australia: an early Archaean migmatite. Precambrian Research, 1996, 78, 165-178.	2.7	76
48	U–Pb ages from the Harts Range, central Australia: evidence for early Ordovician extension and constraints on Carboniferous metamorphism. Journal of the Geological Society, 1999, 156, 715-730.	2.1	75
49	The difficulties of dating mafic dykes: an Antarctic example. Contributions To Mineralogy and Petrology, 1991, 109, 183-194.	3.1	74
50	Depositional age, provenance and metamorphic age of metasedimentary rocks from southern Madagascar. Gondwana Research, 2012, 21, 353-361.	6.0	73
51	Enhanced diffusion of Uranium and Thorium linked to crystal plasticity in zircon. Geochemical Transactions, 2006, 7, 10.	0.7	72
52	Mesoproterozoic rifting and Pan-African continental collision in SE India: evidence from the Khariar alkaline complex. Contributions To Mineralogy and Petrology, 2006, 151, 434-456.	3.1	71
53	The growth of Early Proterozoic crust: new evidence from Svecofennian detrital zircons. Terra Nova, 1991, 3, 175-178.	2.1	68
54	Rapid production and evolution of late Archaean felsic crust in the Vestfold Block of East Antarctica. Precambrian Research, 1991, 50, 283-310.	2.7	67

#	Article	IF	CITATIONS
55	Timing of magmatism and metamorphism in the Gruinard Bay area of the Lewisian Gneiss Complex: comparisons with the Assynt Terrane and implications for terrane accretion. Contributions To Mineralogy and Petrology, 2004, 146, 620-636.	3.1	62
56	The foreland-propagating thrust architecture of the East Greenland Caledonides 72°–75°N. Journal of the Geological Society, 2004, 161, 1009-1026.	2.1	61
57	Largeâ€scale crustal structure of the Northwestern Yilgarn Craton, western Australia: Evidence from Nd isotopic data and zircon geochronology. Tectonics, 1993, 12, 971-981.	2.8	59
58	The origin of sapphires: U–Pb dating of zircon inclusions sheds new light. Mineralogical Magazine, 1990, 54, 113-122.	1.4	58
59	Interpreting granulite facies events through rare earth element partitioning arrays. Journal of Metamorphic Geology, 2017, 35, 759-775.	3.4	57
60	U–Pb geochronology of the Fort Augustus granite gneiss: constraints on the timing of Neoproterozoic and Palaeozoic tectonothermal events in the NW Highlands of Scotland. Journal of the Geological Society, 2001, 158, 7-14.	2.1	56
61	A mantle metasomatic injection event linked to late Cretaceous kimberlite magmatism. Nature, 1992, 360, 726-728.	27.8	55
62	Late Archean and Early Proterozoic crustal evolution of the Mount Isa block, northwest Queensland, Australia. Geology, 1997, 25, 1095.	4.4	55
63	⩾3850 Ma BIF and mafic inclusions in the early Archaean Itsaq Gneiss Complex around Akilia, southern West Greenland? The difficulties of precise dating of zircon-free protoliths in migmatites. Precambrian Research, 2002, 117, 185-224.	2.7	53
64	Zircon from the Mantle: A New Way to Date Old Diamonds. Journal of Geology, 1994, 102, 475-481.	1.4	50
65	High-grade Paleoproterozoic reworking in the southeastern Gawler Craton, South Australia â^—. Australian Journal of Earth Sciences, 2008, 55, 1063-1081.	1.0	45
66	Reappraising the P–T evolution of the Rogaland–Vest Agder Sector, southwestern Norway. Geoscience Frontiers, 2017, 8, 1-14.	8.4	43
67	Subduction or sagduction? Ambiguity in constraining the origin of ultramafic–mafic bodies in the Archean crust of NW Scotland. Precambrian Research, 2016, 283, 89-105.	2.7	42
68	Relationships between magmatism, metamorphism and deformation in the Fraser Complex, Western Australia: Constraints from new SHRIMP U–Pb zircon geochronology. Australian Journal of Earth Sciences, 1999, 46, 923-932.	1.0	41
69	Dating lower crust and upper mantle events: an ion microprobe study of xenoliths from kimberlitic pipes, South Australia. Lithos, 1994, 32, 77-94.	1.4	40
70	U–Pb zircon dating of basement inliers within the Moine Supergroup, Scottish Caledonides: implications of Archaean protolith ages. Journal of the Geological Society, 2008, 165, 807-815.	2.1	40
71	U–Pb geochronology of late Neoproterozoic augen granites in the Moine Supergroup, NW Scotland: dating of rift-related, felsic magmatism during supercontinent break-up?. Journal of the Geological Society, 2003, 160, 925-934.	2.1	38
72	Sedimentary provenance and age of metamorphism of the Vestfold Hills, East Antarctica: Evidence for a piece of Chinese Antarctica?. Precambrian Research, 2012, 196-197, 23-45.	2.7	38

#	Article	IF	CITATIONS
73	A relic of the Mozambique Ocean in south-east Tanzania. Precambrian Research, 2018, 305, 386-426.	2.7	34
74	Palaeoproterozoic terrane assembly in the Lewisian Gneiss Complex on the Scottish mainland, south of Gruinard Bay: SHRIMP U–Pb zircon evidence. Precambrian Research, 2010, 183, 89-111.	2.7	31
75	The age of (a tiny part of) the Australian continent. Nature, 1985, 317, 559-560.	27.8	28
76	Timing of gold mineralization in the Mt York district, Pilgangoora greenstone belt, and implications for the tectonic and metamorphic evolution of an area linking the western and eastern Pilbara Craton. Precambrian Research, 1998, 88, 249-265.	2.7	27
77	Progressive fold and fabric evolution associated with regional strain gradients: a case study from across a Scandian ductile thrust nappe, Scottish Caledonides. Geological Society Special Publication, 2010, 335, 255-274.	1.3	27
78	Zircons and clay from morainal Permian siltstone at Mt Rymill (73°S, 66°E), Prince Charles Mountains, Antarctica, reflect the ancestral Gamburtsev Subglacial Mountains–Vostok Subglacial Highlands complex. Gondwana Research, 2008, 14, 343-354.	6.0	25
79	The Laxford Shear Zone: an end-Archaean terrane boundary?. Geological Society Special Publication, 2010, 335, 103-120.	1.3	24
80	12. Lu-Hf and Sm-Nd isotope systems in zircon. , 2003, , 327-342.		22
81	Dating Prograde Amphibolite and Granulite Facies Metamorphism Using In Situ Monazite Uâ€Pb SHRIMP Analysis. Journal of Geology, 2007, 115, 691-705.	1.4	21
82	Zircon U–Th–Pb–He double dating of the Merlin kimberlite field, Northern Territory, Australia. Lithos, 2009, 112, 592-599.	1.4	21
83	Lower crustal and possible shallow mantle samples from beneath the Hebrides: evidence from a xenolithic dyke at Gribun, western Mull. Journal of the Geological Society, 1998, 155, 813-828.	2.1	20
84	Reconnaissance dating of events recorded in the southern part of the Capricorn Orogen. Precambrian Research, 2004, 128, 279-294.	2.7	19
85	Strontium isotope analysis of apatite via SIMS. Chemical Geology, 2021, 559, 119979.	3.3	14
86	Applications of the SHRIMP I ion microprobe to the understanding of processes and timing of diamond formation. Economic Geology, 1995, 90, 271-280.	3.8	13
87	Closed system behaviour of argon in osumilite records protracted highâ€ <i>T</i> metamorphism within the Rogaland–Vest Agder Sector, Norway. Journal of Metamorphic Geology, 2019, 37, 667-680.	3.4	11
88	Evidence from U–Pb zircon geochronology for early Neoproterozoic (Tonian) reworking of an Archaean inlier in northeastern Shetland, Scottish Caledonides. Journal of the Geological Society, 2017, 174, 217-232.	2.1	10
89	Discussion on a terrane-based nomenclature for the Lewisian Gneiss Complex of NW Scotland Journal, Vol. 162, 2005, pp. 175–186. Journal of the Geological Society, 2005, 162, 893-895. 	2.1	9
90	Timing of magmatism and metamorphism in the Gruinard Bay area of the Lewisian Gneiss Complex: comparison with the Assynt Terrane and implications for terrane accretion—reply. Contributions To Mineralogy and Petrology, 2007, 153, 489-492.	3.1	9

#	Article	IF	CITATIONS
91	The Neoarchean Uyea Gneiss Complex, Shetland: an onshore fragment of the Rae Craton on the European Plate. Journal of the Geological Society, 2019, 176, 847-862.	2.1	9
92	lsotopic modelling of Archean crustal evolution from comagmatic zircon–apatite pairs. Earth and Planetary Science Letters, 2021, 575, 117194.	4.4	6
93	Thermal metamorphism near Willi Willi, New South Wales. Australian Journal of Earth Sciences, 1985, 32, 333-342.	1.0	5
94	A Toba-scale eruption in the Early Miocene: The Semilir eruption, East Java, Indonesia. Lithos, 2011, 126, 198-211.	1.4	5
95	Phase Decomposition upon Alteration of Radiation-Damaged Monazite–(Ce) from Moss, Ã~stfold, Norway. Chimia, 2010, 64, 705-711.	0.6	4
96	Iridescent anthophyllite-gedrite from Simiuttat, Nuuk district, southern West Greenland composition, exsolution, age. Mineralogical Magazine, 1996, 60, 937-947.	1.4	3
97	Probing the history of ultraâ€high temperature metamorphism through rare earth element diffusion in zircon. Journal of Metamorphic Geology, 2022, 40, 329-357.	3.4	3