paulo De sepulveda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1578850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TET2 regulates immune tolerance in chronically activated mast cells. JCI Insight, 2022, 7, .	5.0	4
2	GlcNAc is a mast-cell chromatin-remodeling oncometabolite that promotes systemic mastocytosis aggressiveness. Blood, 2021, 138, 1590-1602.	1.4	4
3	Protein Kinases in Leukemias. Cancers, 2021, 13, 2747.	3.7	0
4	Assessing BRCA1 activity in DNA damage repair using human induced pluripotent stem cells as an approach to assist classification of BRCA1 variants of uncertain significance. PLoS ONE, 2021, 16, e0260852.	2.5	2
5	SRC-Family Kinases in Acute Myeloid Leukaemia and Mastocytosis. Cancers, 2020, 12, 1996.	3.7	11
6	Dual protein kinase and nucleoside kinase modulators for rationally designed polypharmacology. Nature Communications, 2017, 8, 1420.	12.8	18
7	Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. Journal of Clinical Investigation, 2017, 127, 2310-2325.	8.2	26
8	An essential pathway links FLT3-ITD, HCK and CDK6 in acute myeloid leukemia. Oncotarget, 2016, 7, 51163-51173.	1.8	15
9	Insight on Mutation-Induced Resistance from Molecular Dynamics Simulations of the Native and Mutated CSF-1R and KIT. PLoS ONE, 2016, 11, e0160165.	2.5	8
10	An oncogenomics-based in vivo screen identifies novel melanoma tumor-suppressors. European Journal of Cancer, 2016, 61, S30-S31.	2.8	0
11	Characterization of S628N. JAMA Dermatology, 2014, 150, 1345.	4.1	6
12	KIT-D816V oncogenic activity is controlled by the juxtamembrane docking site Y568-Y570. Oncogene, 2014, 33, 872-881.	5.9	23
13	SRSF2-p95 hotspot mutation is highly associated with advanced forms of mastocytosis and mutations in epigenetic regulator genes. Haematologica, 2014, 99, 830-835.	3.5	55
14	In aggressive forms of mastocytosis, TET2 loss cooperates with c-KITD816V to transform mast cells. Blood, 2012, 120, 4846-4849.	1.4	89
15	Mechanisms of STAT Protein Activation by Oncogenic KIT Mutants in Neoplastic Mast Cells. Journal of Biological Chemistry, 2011, 286, 5956-5966.	3.4	58
16	Pediatric mastocytosis–associated KIT extracellular domain mutations exhibit different functional and signaling properties compared with KIT-phosphotransferase domain mutations. Blood, 2010, 116, 1114-1123.	1.4	52
17	The Fer tyrosine kinase regulates interactions of Rho GDP-Dissociation Inhibitor a with the small GTPase Rac. BMC Biochemistry, 2010, 11, 48.	4.4	13
18	FES kinases are required for oncogenic FLT3 signaling. Leukemia, 2010, 24, 721-728.	7.2	28

PAULO DE SEPULVEDA

#	Article	IF	CITATIONS
19	FES kinase participates in KIT-ligand induced chemotaxis. Biochemical and Biophysical Research Communications, 2010, 393, 174-178.	2.1	6
20	Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood, 2008, 112, 4039-4047.	1.4	43
21	The tyrosine kinase FES is an essential effector of KITD816V proliferation signal. Blood, 2007, 110, 2593-2599.	1.4	44
22	The E3 ubiquitin ligase HOIL-1 induces the polyubiquitination and degradation of SOCS6 associated proteins. FEBS Letters, 2006, 580, 2609-2614.	2.8	31
23	Rapamycin inhibits growth and survival of D816V-mutated c-kit mast cells. Blood, 2006, 108, 1065-1072.	1.4	62
24	The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9529-9534.	7.1	51
25	Suppressor of Cytokine Signaling 6 Associates with KIT and Regulates KIT Receptor Signaling. Journal of Biological Chemistry, 2004, 279, 12249-12259.	3.4	71
26	Spontaneous STAT5 activation induces growth factor independence in idiopathic myelofibrosis: possible relationship with FKBP51 overexpression. Experimental Hematology, 2003, 31, 622-630.	0.4	50
27	Effect of tyrosine kinase inhibitor STI571 on the kinase activity of wild-type and various mutated c-kit receptors found in mast cell neoplasms. Oncogene, 2003, 22, 660-664.	5.9	179
28	Signal transduction by several KIT juxtamembrane domain mutations. Oncogene, 2003, 22, 4710-4722.	5.9	65
29	A Positive Regulatory Role for Suppressor of Cytokine Signaling 1 in IFN-Î ³ -Induced MHC Class II Expression in Fibroblasts. Journal of Immunology, 2002, 169, 5010-5020.	0.8	25
30	The tumor suppressor activity of SOCS-1. Oncogene, 2002, 21, 4351-4362.	5.9	123
31	Overexpression of suppressor of cytokine signaling-1 impairs pre-T-cell receptor–induced proliferation but not differentiation of immature thymocytes. Blood, 2001, 97, 2269-2277.	1.4	36
32	Suppressor of Cytokine Signaling 1 Interacts with the Macrophage Colony-stimulating Factor Receptor and Negatively Regulates Its Proliferation Signal. Journal of Biological Chemistry, 2001, 276, 22133-22139.	3.4	42
33	Suppressor of Cytokine Signaling-1 Inhibits VAV Function through Protein Degradation. Journal of Biological Chemistry, 2000, 275, 14005-14008.	3.4	149
34	Socs1 binds to multiple signalling proteins and suppresses Steel factor-dependent proliferation. EMBO Journal, 1999, 18, 904-915.	7.8	192
35	Multiple neuroendocrine tumours in transgenic mice induced by c-kit-SV40 T antigen fusion genes. Oncogene, 1997, 14, 2661-2670.	5.9	13
36	SARs Do Not Impair Position-Dependent Expression of a kit/LacZ Transgene. Biochemical and Biophysical Research Communications, 1995, 211, 735-741.	2.1	15