
M Mar DÃ-az Requejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1578790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Introducing the Catalytic Amination of Silanes via Nitrene Insertion. Journal of the American Chemical Society, 2022, 144, 10608-10614.	13.7	6
2	Development of Molecular Complexity through Nitrene-Transfer Reactions Catalyzed by Copper and Silver Scorpionate Complexes. Synlett, 2021, 32, 763-774.	1.8	4
3	Metal-Catalyzed Postpolymerization Strategies for Polar Group Incorporation into Polyolefins Containing C–C, Câ•C, and Aromatic Rings. Macromolecules, 2021, 54, 4971-4985.	4.8	26
4	The Tp x M Core in C sp 3 –H Bond Functionalization Reactions: Comparing Carbene, Nitrene, and Oxo Insertion Processes (Tp x = Scorpionate Ligand; M = Cu, Ag). European Journal of Inorganic Chemistry, 2020, 2020, 879-885.	2.0	7
5	Pyrrole Functionalization by Copperâ€Catalyzed Nitrene Transfer Reactions. Israel Journal of Chemistry, 2020, 60, 485-489.	2.3	4
6	The Tp x M Core in C sp 3 –H Bond Functionalization Reactions: Comparing Carbene, Nitrene, and Oxo Insertion Processes (Tp x = Scorpionate Ligand; M = Cu, Ag). European Journal of Inorganic Chemistry, 2020, 2020, 869-869.	2.0	0
7	Intermolecular Allene Functionalization by Silver-Nitrene Catalysis. Journal of the American Chemical Society, 2020, 142, 13062-13071.	13.7	25
8	Copper atalyzed Selective Pyrrole Functionalization by Carbene Transfer Reaction. Advanced Synthesis and Catalysis, 2020, 362, 1998-2004.	4.3	11
9	Front Cover Picture: Copper atalyzed Selective Pyrrole Functionalization by Carbene Transfer Reaction (Adv. Synth. Catal. 10/2020). Advanced Synthesis and Catalysis, 2020, 362, 1905-1905.	4.3	0
10	Trispyrazolylborate Ligands Supported on Vinyl Addition Polynorbornenes and Their Copper Derivatives as Recyclable Catalysts. Chemistry - A European Journal, 2019, 25, 556-563.	3.3	9
11	Mechanism of the Selective Fe-Catalyzed Arene Carbon–Hydrogen Bond Functionalization. ACS Catalysis, 2018, 8, 4313-4322.	11.2	32
12	Functional-Group-Tolerant, Silver-Catalyzed N–N Bond Formation by Nitrene Transfer to Amines. Journal of the American Chemical Society, 2017, 139, 2216-2223.	13.7	62
13	Frontispiece: Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie - International Edition, 2017, 56, .	13.8	0
14	Frontispiz: Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie, 2017, 129, .	2.0	0
15	A competing, dual mechanism for catalytic direct benzene hydroxylation from combined experimental-DFT studies. Chemical Science, 2017, 8, 8373-8383.	7.4	30
16	Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie, 2017, 129, 13022-13027.	2.0	10
17	Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie - International Edition, 2017, 56, 12842-12847.	13.8	36
18	Mechanistic Studies on Gold-Catalyzed Direct Arene C–H Bond Functionalization by Carbene Insertion: The Coinage-Metal Effect. Organometallics, 2017, 36, 172-179.	2.3	52

M Mar DÃaz Requejo

#	Article	IF	CITATIONS
19	Iron and Manganese Catalysts for the Selective Functionalization of Arene C(sp ²)â^H Bonds by Carbene Insertion. Angewandte Chemie - International Edition, 2016, 55, 6530-6534.	13.8	77
20	lron and Manganese Catalysts for the Selective Functionalization of Arene C(sp ²)â^'H Bonds by Carbene Insertion. Angewandte Chemie, 2016, 128, 6640-6644.	2.0	29
21	Gold and diazo reagents: a fruitful tool for developing molecular complexity. Chemical Communications, 2016, 52, 7326-7335.	4.1	126
22	Direct Synthesis of Hemiaminal Ethers <i>via</i> a Threeâ€Component Reaction of Aldehydes, Amines and Alcohols. Advanced Synthesis and Catalysis, 2015, 357, 2821-2826.	4.3	13
23	Evidencing an inner-sphere mechanism for NHC-Au(I)-catalyzed carbene-transfer reactions from ethyl diazoacetate. Beilstein Journal of Organic Chemistry, 2015, 11, 2254-2260.	2.2	5
24	A fully recyclable heterogenized Cu catalyst for the general carbene transfer reaction in batch and flow. Chemical Science, 2015, 6, 1510-1515.	7.4	46
25	Chiral, Sterically Demanding N-Heterocyclic Carbenes Fused into a Heterobiaryl Skeleton: Design, Synthesis, and Structural Analysis. Organometallics, 2015, 34, 1328-1338.	2.3	31
26	Catalytic functionalization of low reactive C(sp ³)–H and C(sp ²)–H bonds of alkanes and arenes by carbene transfer from diazo compounds. Dalton Transactions, 2015, 44, 20295-20307.	3.3	104
27	Chemo-, Regio-, and Stereoselective Silver-Catalyzed Aziridination of Dienes: Scope, Mechanistic Studies, and Ring-Opening Reactions. Journal of the American Chemical Society, 2014, 136, 5342-5350.	13.7	89
28	Catalytic cross-coupling of diazo compounds with coinage metal-based catalysts: an experimental and theoretical study. Dalton Transactions, 2013, 42, 4132.	3.3	57
29	A General Mechanism for the Copper- and Silver-Catalyzed Olefin Aziridination Reactions: Concomitant Involvement of the Singlet and Triplet Pathways. Journal of the American Chemical Society, 2013, 135, 1338-1348.	13.7	160
30	Introducing Copper as Catalyst for Oxidative Alkane Dehydrogenation. Journal of the American Chemical Society, 2013, 135, 3887-3896.	13.7	89
31	Catalytic C–H amination of alkanes with sulfonimidamides: silver(I)-scorpionates vs. dirhodium(II) carboxylates. Tetrahedron, 2013, 69, 4488-4492.	1.9	43
32	Mild Catalytic Functionalization of Styrene–Butadiene Rubbers. Macromolecules, 2012, 45, 9267-9274.	4.8	14
33	Copper-Catalyzed Nitrene Transfer as a Tool for the Synthesis of N-Substituted 1,2-Dihydro- and 1,2,3,4-Tetrahydropyridines. Organometallics, 2012, 31, 7839-7843.	2.3	20
34	Catalytic Hydrocarbon Functionalization with Gold Complexes Containing Nâ€Heterocyclic Carbene Ligands with Pendant Donor Groups. European Journal of Inorganic Chemistry, 2012, 2012, 1380-1386.	2.0	32
35	Polynuclear Copper(I) Complexes with Chelating Bis―and Trisâ€ <i>N</i> â€Heterocyclic Carbene Ligands: Catalytic Activity in Nitrene and Carbene Transfer Reactions. European Journal of Organic Chemistry, 2012, 2012, 1367-1372.	2.4	49
36	Direct, copper-catalyzed oxidation of aromatic C–H bonds with hydrogen peroxide under acid-free conditions. Chemical Communications, 2011, 47, 8154.	4.1	68

M Mar DÃaz Requejo

#	Article	IF	CITATIONS
37	Exclusive Aromatic vs Aliphatic C–H Bond Functionalization by Carbene Insertion with Gold-Based Catalysts. Organometallics, 2011, 30, 2855-2860.	2.3	115
38	Gold-catalyzed naphthalene functionalization. Beilstein Journal of Organic Chemistry, 2011, 7, 653-657.	2.2	37
39	Mechanism of Side Reactions in Alkane Cĩ£įH Bond Functionalization by Diazo Compounds Catalyzed by Ag and Cu Homoscorpionate Complexes—A DFT Study. ChemCatChem, 2011, 3, 1646-1652.	3.7	47
40	Silver-Catalyzed C-C Bond Formation Between Methane and Ethyl Diazoacetate in Supercritical CO ₂ . Science, 2011, 332, 835-838.	12.6	228
41	Efficient Silverâ€Catalyzed Regio―and Stereospecific Aziridination of Dienes. Angewandte Chemie - International Edition, 2010, 49, 7092-7095.	13.8	86
42	Catalytic cyclopropanation of polybutadienes. Journal of Polymer Science Part A, 2010, 48, 4439-4444.	2.3	17
43	Selective Synthesis of N-Substituted 1,2-Dihydropyridines from Furans by Copper-Induced Concurrent Tandem Catalysis. Journal of the American Chemical Society, 2010, 132, 4600-4607.	13.7	66
44	Metal atalyzed Olefin Cyclopropanation with Ethyl Diazoacetate: Control of the Diastereoselectivity. European Journal of Inorganic Chemistry, 2009, 2009, 1137-1144.	2.0	82
45	Hydrotrispyrazolylborate-copper complexes as catalysts for the styrene cyclopropanation reaction with ethyl diazoacetate under homogeneous and heterogeneous conditions. Inorganica Chimica Acta, 2009, 362, 4599-4602.	2.4	7
46	Gold-catalyzed olefin cyclopropanation. Tetrahedron, 2009, 65, 1790-1793.	1.9	108
47	The Mechanism of the Catalytic Functionalization of Haloalkanes by Carbene Insertion: An Experimental and Theoretical Study. Organometallics, 2009, 28, 5968-5981.	2.3	49
48	Asymmetric β-Boration of α,β-Unsaturated Esters with Chiral (NHC)Cu Catalysts. Organometallics, 2009, 28, 659-662.	2.3	201
49	Highly active gold-based catalyst for the reaction of benzaldehyde with ethyl diazoacetate. Chemical Communications, 2009, , 5153.	4.1	31
50	The selective catalytic formation of β-boryl aldehydes through a base-free approach. Organic and Biomolecular Chemistry, 2009, 7, 1533.	2.8	49
51	Coinage Metal Catalyzed Câ^H Bond Functionalization of Hydrocarbons. Chemical Reviews, 2008, 108, 3379-3394.	47.7	705
52	Gold-promoted styrene polymerization. Chemical Communications, 2008, , 759-761.	4.1	48
53	A New Perfluorinated F ₂₁ -Tp Scorpionate Ligand: Enhanced Alkane Functionalization by Carbene Insertion with (F ₂₁ -Tp)M Catalysts (M = Cu, Ag). Organometallics, 2008, 27, 4779-4787.	2.3	64
54	Easy Alkane Catalytic Functionalization. Organometallics, 2008, 27, 4126-4130.	2.3	90

M Mar DÃaz Requejo

#	Article	IF	CITATIONS
55	Effects of the Substituents in the Tp ^x Cu Activation of Dioxygen:  An Experimental Study. Inorganic Chemistry, 2007, 46, 7428-7435.	4.0	31
56	Unusual Polybrominated Polypyrazolylborates and Their Copper(I) Complexes:  Synthesis, Characterization, and Catalytic Activity. Inorganic Chemistry, 2007, 46, 780-787.	4.0	32
57	Copperâ^'Homoscorpionate Complexes as Active Catalysts for Atom Transfer Radical Addition to Olefins. Inorganic Chemistry, 2007, 46, 7725-7730.	4.0	52
58	A Valuable, Inexpensive Cul/N-Heterocyclic Carbene Catalyst for the Selective Diboration of Styrene. Chemistry - A European Journal, 2007, 13, 2614-2621.	3.3	156
59	The Effect of Catalyst Loading in Copper-Catalyzed Cyclohexane Functionalization by Carbene Insertion. European Journal of Inorganic Chemistry, 2007, 2007, 2848-2852.	2.0	18
60	Mechanism of Alkane Câ^'H Bond Activation by Copper and Silver Homoscorpionate Complexes. Organometallics, 2006, 25, 5292-5300.	2.3	84
61	Facile Amine Formation by Intermolecular Catalytic Amidation of Carbonâ^'Hydrogen Bonds. Journal of the American Chemical Society, 2006, 128, 11784-11791.	13.7	267
62	The carbene insertion methodology for the catalytic functionalization of unreactive hydrocarbons: No classical C–H activation, but efficient C–H functionalization. Dalton Transactions, 2006, , 5559-5566.	3.3	66
63	A non-fluorous copper catalyst for the styrene cyclopropanation reaction in a fluorous medium. Chemical Communications, 2006, , 1000.	4.1	13
64	Alkane Carbonâ^'Hydrogen Bond Functionalization with (NHC)MCl Precatalysts (M = Cu, Au; NHC =) Tj ETQqO	0 0 rgBT /O	verlock 10 Tf 164
65	Very Efficient, Reusable Copper Catalyst for Carbene Transfer Reactions under Biphasic Conditions Using Ionic Liquids. Organic Letters, 2006, 8, 557-560.	4.6	43
66	Synthesis, isolation and characterization of cationic gold(i) N-heterocyclic carbene (NHC) complexes. Chemical Communications, 2006, , 2045-2047.	4.1	109
67	Copper, silver and gold-based catalysts for carbene addition or insertion reactions. Journal of Organometallic Chemistry, 2005, 690, 5441-5450.	1.8	117
68	A Gold Catalyst for Carbene-Transfer Reactions from Ethyl Diazoacetate. Angewandte Chemie - International Edition, 2005, 44, 5284-5288.	13.8	422
69	Copper-Catalyzed Addition of Ethyl Diazoacetate to Furans: An Alternative to Dirhodium(II) Tetraacetate ChemInform, 2005, 36, no.	0.0	0
70	Functionalization of Primary Carbonâ^'Hydrogen Bonds of Alkanes by Carbene Insertion with a Silver-Based Catalyst. Organometallics, 2005, 24, 1528-1532.	2.3	102
71	Controlled, Copper-Catalyzed Functionalization of Polyolefins. Macromolecules, 2005, 38, 4966-4969.	4.8	55
72	Copper-Catalyzed Addition of Ethyl Diazoacetate to Furans:  An Alternative to Dirhodium(II) Tetraacetate. Journal of Organic Chemistry, 2005, 70, 6101-6104.	3.2	34

#	Article	IF	CITATIONS
73	Copper-Homoscorpionate Complexes as Very Active Catalysts for the Olefin Aziridination Reaction ChemInform, 2004, 35, no.	0.0	0

75	Complete Control of the Chemoselectivity in Catalytic Carbene Transfer Reactions from Ethyl Diazoacetate:Â AnN-Heterocyclic Carbeneâ`'Cu System That Suppresses Diazo Coupling. Journal of the American Chemical Society, 2004, 126, 10846-10847.	13.7	115
76	Reaction of Ethyl Diazoacetate with Alkyl-Aromatic Substrates:  Influence of the TpxCu Catalyst in the Addition versus Insertion Chemoselectivity (Tpx = Homoscorpionate). Organometallics, 2004, 23, 293-295.	2.3	57
77	Copper-Homoscorpionate Complexes as Very Active Catalysts for the Olefin Aziridination Reaction. Organometallics, 2004, 23, 253-256.	2.3	94
78	Catalytic Insertion of Diazo Compounds into N—H Bonds: The Copper Alternative ChemInform, 2003, 34, no.	0.0	0
79	Synthesis of 1,2-Diheteroatom-Substituted Alkenes via Rhodium-Catalyzed Intramolecular Hydrogen Transfer ChemInform, 2003, 34, no.	0.0	0
80	Copper-Catalyzed Carbene Insertion into Oâ^'H Bonds:  High Selective Conversion of Alcohols into Ethers. Organometallics, 2003, 22, 2914-2918.	2.3	40
81	Functionalization of Carbonâ 'Hydrogen Bonds of Hydrocarbons and Ethers via Carbene Insertion with Copper(I)â 'Homoscorpionate Catalysts. Organometallics, 2003, 22, 4145-4150.	2.3	69
82	Highly Regioselective Functionalization of Aliphatic Carbonâ	13.7	122
83	Synthesis of 1,2-Diheteroatom-Substituted Alkenes via Rhodium-Catalyzed Intramolecular Hydrogen Transfer. Journal of the American Chemical Society, 2003, 125, 2038-2039.	13.7	18
84	Cyclohexane and Benzene Amination by Catalytic Nitrene Insertion into Câ^'H Bonds with the Copper-Homoscorpionate Catalyst TpBr3Cu(NCMe). Journal of the American Chemical Society, 2003, 125, 12078-12079.	13.7	160
85	Intermolecular Copper-Catalyzed Carbonâ	13.7	139
86	Copper(I)â^'Homoscorpionate Catalysts for the Preferential, Kinetically Controlled Cis Cyclopropanation of α-Olefins with Ethyl Diazoacetate. Journal of the American Chemical Society, 2002, 124, 978-983.	13.7	98
87	Catalytic insertion of diazo compounds into N–H bonds: the copper alternative. Chemical Communications, 2002, , 2998-2999.	4.1	86
88	Intramolecular dealkylation of chelating diamines with Ru(ii) complexes. Chemical Communications, 2002, , 1848-1849.	4.1	12
89	A family of highly active copper(i)–homoscorpionate catalysts for the alkyne cyclopropenation reaction. Chemical Communications, 2001, , 1804-1805.	4.1	63
90	Unprecedented Highlycis-Diastereoselective Olefin Cyclopropanation Using Copper Homoscorpionate Catalysts. Journal of the American Chemical Society, 2001, 123, 3167-3168.	13.7	68

#	Article	IF	CITATIONS
91	Polypyrazolylborate copper(i) complexes as catalysts of the homogeneous and heterogeneous styrene epoxidation reaction. Chemical Communications, 2000, , 1853-1854.	4.1	32
92	From Homogeneous to Heterogeneous Catalysis:  Novel Anchoring of Polypyrazolylborate Copper(I) Complexes on Silica Gel through Classical and Nonclassical Hydrogen Bonds. Use as Catalysts of the Olefin Cyclopropanation Reaction. Organometallics, 2000, 19, 285-289.	2.3	47
93	Kinetics of the BpCu-Catalyzed Carbene Transfer Reaction (Bp = Dihydridobis(1-pyrazolyl)borate). Is a 14-Electron Species the Real Catalyst for the General Copper-Mediated Olefin Cyclopropanation?. Organometallics, 1999, 18, 2601-2609.	2.3	65
94	BpCu-Catalyzed Cyclopropanation of Olefins:Â A Simple System That Operates under Homogeneous and Heterogeneous Conditions (Bp = Dihydridobis(pyrazolyl)borate)â€. Organometallics, 1998, 17, 3051-3057.	2.3	60
95	Substituent Effects on the Reaction Rates of Copper-Catalyzed Cyclopropanation and Aziridination of para-Substituted Styrenesâ€. Organometallics, 1997, 16, 4399-4402.	2.3	141