M Mar DÃ-az Requejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1578790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coinage Metal Catalyzed Câ^'H Bond Functionalization of Hydrocarbons. Chemical Reviews, 2008, 108, 3379-3394.	47.7	705
2	A Gold Catalyst for Carbene-Transfer Reactions from Ethyl Diazoacetate. Angewandte Chemie - International Edition, 2005, 44, 5284-5288.	13.8	422
3	Facile Amine Formation by Intermolecular Catalytic Amidation of Carbonâ `Hydrogen Bonds. Journal of the American Chemical Society, 2006, 128, 11784-11791.	13.7	267
4	Silver-Catalyzed C-C Bond Formation Between Methane and Ethyl Diazoacetate in Supercritical CO ₂ . Science, 2011, 332, 835-838.	12.6	228
5	Asymmetric β-Boration of α,β-Unsaturated Esters with Chiral (NHC)Cu Catalysts. Organometallics, 2009, 28, 659-662.	2.3	201
6	Alkane Carbonâ^'Hydrogen Bond Functionalization with (NHC)MCl Precatalysts (M = Cu, Au; NHC =) Tj ETQq0 0 (DrgBgT ∕Ov	erlock 10 Tf 164
	Cueloboyana and Panzona Aminatian by Catalytic Nitrona Insertion into Câ ² H Panda with the		

7	Copper-Homoscorpionate Catalyst TpBr3Cu(NCMe). Journal of the American Chemical Society, 2003, 125, 12078-12079.	13.7	160
8	A General Mechanism for the Copper- and Silver-Catalyzed Olefin Aziridination Reactions: Concomitant Involvement of the Singlet and Triplet Pathways. Journal of the American Chemical Society, 2013, 135, 1338-1348.	13.7	160
9	A Valuable, Inexpensive Cul/N-Heterocyclic Carbene Catalyst for the Selective Diboration of Styrene. Chemistry - A European Journal, 2007, 13, 2614-2621.	3.3	156
10	Substituent Effects on the Reaction Rates of Copper-Catalyzed Cyclopropanation and Aziridination of para-Substituted Styrenesâ€. Organometallics, 1997, 16, 4399-4402.	2.3	141
11	Intermolecular Copper-Catalyzed Carbonâ^'Hydrogen Bond Activation via Carbene Insertion. Journal of the American Chemical Society, 2002, 124, 896-897.	13.7	139
12	Cold and diazo reagents: a fruitful tool for developing molecular complexity. Chemical Communications, 2016, 52, 7326-7335.	4.1	126
13	Highly Regioselective Functionalization of Aliphatic Carbonâ Yydrogen Bonds with a Perbromohomoscorpionate Copper(I) Catalyst. Journal of the American Chemical Society, 2003, 125, 1446-1447.	13.7	122
14	Copper, silver and gold-based catalysts for carbene addition or insertion reactions. Journal of Organometallic Chemistry, 2005, 690, 5441-5450.	1.8	117
15	Complete Control of the Chemoselectivity in Catalytic Carbene Transfer Reactions from Ethyl Diazoacetate: AnN-Heterocyclic Carbeneâ"Cu System That Suppresses Diazo Coupling. Journal of the American Chemical Society, 2004, 126, 10846-10847.	13.7	115
16	Exclusive Aromatic vs Aliphatic C–H Bond Functionalization by Carbene Insertion with Gold-Based Catalysts. Organometallics, 2011, 30, 2855-2860.	2.3	115
17	Synthesis, isolation and characterization of cationic gold(i) N-heterocyclic carbene (NHC) complexes. Chemical Communications, 2006, , 2045-2047.	4.1	109
18	Gold-catalyzed olefin cyclopropanation. Tetrahedron, 2009, 65, 1790-1793.	1.9	108

#	Article	IF	CITATIONS
19	Catalytic functionalization of low reactive C(sp ³)–H and C(sp ²)–H bonds of alkanes and arenes by carbene transfer from diazo compounds. Dalton Transactions, 2015, 44, 20295-20307.	3.3	104
20	Functionalization of Primary Carbonâ	2.3	102
21	Copper(I)â~'Homoscorpionate Catalysts for the Preferential, Kinetically Controlled Cis Cyclopropanation of α-Olefins with Ethyl Diazoacetate. Journal of the American Chemical Society, 2002, 124, 978-983.	13.7	98
22	Copper-Homoscorpionate Complexes as Very Active Catalysts for the Olefin Aziridination Reaction. Organometallics, 2004, 23, 253-256.	2.3	94
23	Easy Alkane Catalytic Functionalization. Organometallics, 2008, 27, 4126-4130.	2.3	90
24	Introducing Copper as Catalyst for Oxidative Alkane Dehydrogenation. Journal of the American Chemical Society, 2013, 135, 3887-3896.	13.7	89
25	Chemo-, Regio-, and Stereoselective Silver-Catalyzed Aziridination of Dienes: Scope, Mechanistic Studies, and Ring-Opening Reactions. Journal of the American Chemical Society, 2014, 136, 5342-5350.	13.7	89
26	Catalytic insertion of diazo compounds into N–H bonds: the copper alternative. Chemical Communications, 2002, , 2998-2999.	4.1	86
27	Efficient Silverâ€Catalyzed Regio―and Stereospecific Aziridination of Dienes. Angewandte Chemie - International Edition, 2010, 49, 7092-7095.	13.8	86
28	Mechanism of Alkane Câ^'H Bond Activation by Copper and Silver Homoscorpionate Complexes. Organometallics, 2006, 25, 5292-5300.	2.3	84
29	Metal atalyzed Olefin Cyclopropanation with Ethyl Diazoacetate: Control of the Diastereoselectivity. European Journal of Inorganic Chemistry, 2009, 2009, 1137-1144.	2.0	82
30	Iron and Manganese Catalysts for the Selective Functionalization of Arene C(sp ²)â^'H Bonds by Carbene Insertion. Angewandte Chemie - International Edition, 2016, 55, 6530-6534.	13.8	77
31	Functionalization of Carbonâ~'Hydrogen Bonds of Hydrocarbons and Ethers via Carbene Insertion with Copper(I)â~'Homoscorpionate Catalysts. Organometallics, 2003, 22, 4145-4150.	2.3	69
32	Unprecedented Highlycis-Diastereoselective Olefin Cyclopropanation Using Copper Homoscorpionate Catalysts. Journal of the American Chemical Society, 2001, 123, 3167-3168.	13.7	68
33	Direct, copper-catalyzed oxidation of aromatic C–H bonds with hydrogen peroxide under acid-free conditions. Chemical Communications, 2011, 47, 8154.	4.1	68
34	The carbene insertion methodology for the catalytic functionalization of unreactive hydrocarbons: No classical C–H activation, but efficient C–H functionalization. Dalton Transactions, 2006, , 5559-5566.	3.3	66
35	Selective Synthesis of N-Substituted 1,2-Dihydropyridines from Furans by Copper-Induced Concurrent Tandem Catalysis. Journal of the American Chemical Society, 2010, 132, 4600-4607.	13.7	66
36	Kinetics of the BpCu-Catalyzed Carbene Transfer Reaction (Bp = Dihydridobis(1-pyrazolyl)borate). Is a 14-Electron Species the Real Catalyst for the General Copper-Mediated Olefin Cyclopropanation?. Organometallics, 1999, 18, 2601-2609.	2.3	65

M Mar DÃaz Requejo

#	Article	IF	CITATIONS
37	A New Perfluorinated F ₂₁ -Tp Scorpionate Ligand: Enhanced Alkane Functionalization by Carbene Insertion with (F ₂₁ -Tp)M Catalysts (M = Cu, Ag). Organometallics, 2008, 27, 4779-4787.	2.3	64
38	A family of highly active copper(i)–homoscorpionate catalysts for the alkyne cyclopropenation reaction. Chemical Communications, 2001, , 1804-1805.	4.1	63
39	Functional-Group-Tolerant, Silver-Catalyzed N–N Bond Formation by Nitrene Transfer to Amines. Journal of the American Chemical Society, 2017, 139, 2216-2223.	13.7	62
40	BpCu-Catalyzed Cyclopropanation of Olefins:Â A Simple System That Operates under Homogeneous and Heterogeneous Conditions (Bp = Dihydridobis(pyrazolyl)borate)â€. Organometallics, 1998, 17, 3051-3057.	2.3	60
41	Reaction of Ethyl Diazoacetate with Alkyl-Aromatic Substrates:  Influence of the TpxCu Catalyst in the Addition versus Insertion Chemoselectivity (Tpx = Homoscorpionate). Organometallics, 2004, 23, 293-295.	2.3	57
42	Catalytic cross-coupling of diazo compounds with coinage metal-based catalysts: an experimental and theoretical study. Dalton Transactions, 2013, 42, 4132.	3.3	57
43	Controlled, Copper-Catalyzed Functionalization of Polyolefins. Macromolecules, 2005, 38, 4966-4969.	4.8	55
44	Copperâ^'Homoscorpionate Complexes as Active Catalysts for Atom Transfer Radical Addition to Olefins. Inorganic Chemistry, 2007, 46, 7725-7730.	4.0	52
45	Mechanistic Studies on Gold-Catalyzed Direct Arene C–H Bond Functionalization by Carbene Insertion: The Coinage-Metal Effect. Organometallics, 2017, 36, 172-179.	2.3	52
46	The Mechanism of the Catalytic Functionalization of Haloalkanes by Carbene Insertion: An Experimental and Theoretical Study. Organometallics, 2009, 28, 5968-5981.	2.3	49
47	The selective catalytic formation of β-boryl aldehydes through a base-free approach. Organic and Biomolecular Chemistry, 2009, 7, 1533.	2.8	49
48	Polynuclear Copper(I) Complexes with Chelating Bis―and Trisâ€∢i>Nâ€Heterocyclic Carbene Ligands: Catalytic Activity in Nitrene and Carbene Transfer Reactions. European Journal of Organic Chemistry, 2012, 2012, 1367-1372.	2.4	49
49	Gold-promoted styrene polymerization. Chemical Communications, 2008, , 759-761.	4.1	48
50	From Homogeneous to Heterogeneous Catalysis:  Novel Anchoring of Polypyrazolylborate Copper(I) Complexes on Silica Gel through Classical and Nonclassical Hydrogen Bonds. Use as Catalysts of the Olefin Cyclopropanation Reaction. Organometallics, 2000, 19, 285-289.	2.3	47
51	Mechanism of Side Reactions in Alkane CH Bond Functionalization by Diazo Compounds Catalyzed by Ag and Cu Homoscorpionate Complexes—A DFT Study. ChemCatChem, 2011, 3, 1646-1652.	3.7	47
52	A fully recyclable heterogenized Cu catalyst for the general carbene transfer reaction in batch and flow. Chemical Science, 2015, 6, 1510-1515.	7.4	46
53	Very Efficient, Reusable Copper Catalyst for Carbene Transfer Reactions under Biphasic Conditions Using Ionic Liquids. Organic Letters, 2006, 8, 557-560.	4.6	43
54	Catalytic C–H amination of alkanes with sulfonimidamides: silver(I)-scorpionates vs. dirhodium(II) carboxylates. Tetrahedron, 2013, 69, 4488-4492.	1.9	43

M Mar DÃaz Requejo

#	Article	IF	CITATIONS
55	Copper-Catalyzed Carbene Insertion into Oâ^'H Bonds:  High Selective Conversion of Alcohols into Ethers. Organometallics, 2003, 22, 2914-2918.	2.3	40
56	Gold-catalyzed naphthalene functionalization. Beilstein Journal of Organic Chemistry, 2011, 7, 653-657.	2.2	37
57	Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie - International Edition, 2017, 56, 12842-12847.	13.8	36
58	Copper-Catalyzed Addition of Ethyl Diazoacetate to Furans:  An Alternative to Dirhodium(II) Tetraacetate. Journal of Organic Chemistry, 2005, 70, 6101-6104.	3.2	34
59	Polypyrazolylborate copper(i) complexes as catalysts of the homogeneous and heterogeneous styrene epoxidation reaction. Chemical Communications, 2000, , 1853-1854.	4.1	32
60	Unusual Polybrominated Polypyrazolylborates and Their Copper(I) Complexes:  Synthesis, Characterization, and Catalytic Activity. Inorganic Chemistry, 2007, 46, 780-787.	4.0	32
61	Catalytic Hydrocarbon Functionalization with Gold Complexes Containing Nâ€Heterocyclic Carbene Ligands with Pendant Donor Groups. European Journal of Inorganic Chemistry, 2012, 2012, 1380-1386.	2.0	32
62	Mechanism of the Selective Fe-Catalyzed Arene Carbon–Hydrogen Bond Functionalization. ACS Catalysis, 2018, 8, 4313-4322.	11.2	32
63	Effects of the Substituents in the Tp ^x Cu Activation of Dioxygen:  An Experimental Study. Inorganic Chemistry, 2007, 46, 7428-7435.	4.0	31
64	Highly active gold-based catalyst for the reaction of benzaldehyde with ethyl diazoacetate. Chemical Communications, 2009, , 5153.	4.1	31
65	Chiral, Sterically Demanding N-Heterocyclic Carbenes Fused into a Heterobiaryl Skeleton: Design, Synthesis, and Structural Analysis. Organometallics, 2015, 34, 1328-1338.	2.3	31
66	A competing, dual mechanism for catalytic direct benzene hydroxylation from combined experimental-DFT studies. Chemical Science, 2017, 8, 8373-8383.	7.4	30
67	Iron and Manganese Catalysts for the Selective Functionalization of Arene C(sp ²)â^'H Bonds by Carbene Insertion. Angewandte Chemie, 2016, 128, 6640-6644.	2.0	29
68	Metal-Catalyzed Postpolymerization Strategies for Polar Group Incorporation into Polyolefins Containing C–C, Câ•C, and Aromatic Rings. Macromolecules, 2021, 54, 4971-4985.	4.8	26
69	Intermolecular Allene Functionalization by Silver-Nitrene Catalysis. Journal of the American Chemical Society, 2020, 142, 13062-13071.	13.7	25
70	Copper-Catalyzed Nitrene Transfer as a Tool for the Synthesis of N-Substituted 1,2-Dihydro- and 1,2,3,4-Tetrahydropyridines. Organometallics, 2012, 31, 7839-7843.	2.3	20
71	Synthesis of 1,2-Diheteroatom-Substituted Alkenes via Rhodium-Catalyzed Intramolecular Hydrogen Transfer. Journal of the American Chemical Society, 2003, 125, 2038-2039.	13.7	18
72	The Effect of Catalyst Loading in Copper-Catalyzed Cyclohexane Functionalization by Carbene Insertion. European Journal of Inorganic Chemistry, 2007, 2007, 2848-2852.	2.0	18

M Mar DÃaz Requejo

#	Article	IF	CITATIONS
73	Catalytic cyclopropanation of polybutadienes. Journal of Polymer Science Part A, 2010, 48, 4439-4444.	2.3	17

Alkane Dehydrogenation by Sequential, Double Câ⁻'H Bond Activation by TpBr3Ir(C2H4)2(TpBr3=) Tj ETQq0 0 0 rg BT_{23} /Overlock 10 Tf 50 J

75	Mild Catalytic Functionalization of Styrene–Butadiene Rubbers. Macromolecules, 2012, 45, 9267-9274.	4.8	14
76	A non-fluorous copper catalyst for the styrene cyclopropanation reaction in a fluorous medium. Chemical Communications, 2006, , 1000.	4.1	13
77	Direct Synthesis of Hemiaminal Ethers <i>via</i> a Threeâ€Component Reaction of Aldehydes, Amines and Alcohols. Advanced Synthesis and Catalysis, 2015, 357, 2821-2826.	4.3	13
78	Intramolecular dealkylation of chelating diamines with Ru(ii) complexes. Chemical Communications, 2002, , 1848-1849.	4.1	12
79	Copperâ€Catalyzed Selective Pyrrole Functionalization by Carbene Transfer Reaction. Advanced Synthesis and Catalysis, 2020, 362, 1998-2004.	4.3	11
80	Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie, 2017, 129, 13022-13027.	2.0	10
81	Trispyrazolylborate Ligands Supported on Vinyl Addition Polynorbornenes and Their Copper Derivatives as Recyclable Catalysts. Chemistry - A European Journal, 2019, 25, 556-563.	3.3	9
82	Hydrotrispyrazolylborate-copper complexes as catalysts for the styrene cyclopropanation reaction with ethyl diazoacetate under homogeneous and heterogeneous conditions. Inorganica Chimica Acta, 2009, 362, 4599-4602.	2.4	7
83	The Tp x M Core in C sp 3 –H Bond Functionalization Reactions: Comparing Carbene, Nitrene, and Oxo Insertion Processes (Tp x = Scorpionate Ligand; M = Cu, Ag). European Journal of Inorganic Chemistry, 2020, 2020, 879-885.	2.0	7
84	Introducing the Catalytic Amination of Silanes via Nitrene Insertion. Journal of the American Chemical Society, 2022, 144, 10608-10614.	13.7	6
85	Evidencing an inner-sphere mechanism for NHC-Au(I)-catalyzed carbene-transfer reactions from ethyl diazoacetate. Beilstein Journal of Organic Chemistry, 2015, 11, 2254-2260.	2.2	5
86	Pyrrole Functionalization by Copper atalyzed Nitrene Transfer Reactions. Israel Journal of Chemistry, 2020, 60, 485-489.	2.3	4
87	Development of Molecular Complexity through Nitrene-Transfer Reactions Catalyzed by Copper and Silver Scorpionate Complexes. Synlett, 2021, 32, 763-774.	1.8	4
88	Catalytic Insertion of Diazo Compounds into N—H Bonds: The Copper Alternative ChemInform, 2003, 34, no.	0.0	0
89	Synthesis of 1,2-Diheteroatom-Substituted Alkenes via Rhodium-Catalyzed Intramolecular Hydrogen Transfer ChemInform, 2003, 34, no.	0.0	0
90	Copper-Homoscorpionate Complexes as Very Active Catalysts for the Olefin Aziridination Reaction ChemInform, 2004, 35, no.	0.0	0

#	Article	IF	CITATIONS
91	Copper-Catalyzed Addition of Ethyl Diazoacetate to Furans: An Alternative to Dirhodium(II) Tetraacetate ChemInform, 2005, 36, no.	0.0	0
92	Frontispiece: Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie - International Edition, 2017, 56, .	13.8	0
93	Frontispiz: Catalytic Nitrene Transfer To Alkynes: A Novel and Versatile Route for the Synthesis of Sulfinamides and Isothiazoles. Angewandte Chemie, 2017, 129, .	2.0	0
94	The Tp x M Core in C sp 3 –H Bond Functionalization Reactions: Comparing Carbene, Nitrene, and Oxo Insertion Processes (Tp x = Scorpionate Ligand; M = Cu, Ag). European Journal of Inorganic Chemistry, 2020, 2020, 869-869.	2.0	0
95	Front Cover Picture: Copperâ€Catalyzed Selective Pyrrole Functionalization by Carbene Transfer Reaction (Adv. Synth. Catal. 10/2020). Advanced Synthesis and Catalysis, 2020, 362, 1905-1905.	4.3	0