Thomas Arnold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1578780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The interaction of styrene maleic acid copolymers with phospholipids in Langmuir monolayers, vesicles and nanodiscs; a structural study. Journal of Colloid and Interface Science, 2022, 625, 220-236.	9.4	4
2	In situ X-ray reflectivity and GISAXS study of mesoporous silica films grown from sodium silicate solution precursors. Microporous and Mesoporous Materials, 2022, , 112018.	4.4	3
3	Phosphoniumâ€based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, selfâ€assembly and photovoltaic performances. Polymer International, 2021, 70, 457-466.	3.1	4
4	Surface-controlled spatially heterogeneous physical properties of a supramolecular gel with homogeneous chemical composition. Chemical Science, 2021, 12, 14260-14269.	7.4	7
5	The instrument suite of the European Spallation Source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 957, 163402.	1.6	90
6	A general approach to maximise information density in neutron reflectometry analysis. Machine Learning: Science and Technology, 2020, 1, 035002.	5.0	13
7	Adsorption of a styrene maleic acid (SMA) copolymer-stabilized phospholipid nanodisc on a solid-supported planar lipid bilayer. Journal of Colloid and Interface Science, 2020, 574, 272-284.	9.4	9
8	Wavelength frame multiplication for reflectometry at long-pulse neutron sources. Review of Scientific Instruments, 2020, 91, 125111.	1.3	2
9	The effects of native and modified clupeine on the structure of gram-negative model membranes. Food Structure, 2019, 22, 100127.	4.5	1
10	Planar sucrose substrates for investigating interfaces found in molten chocolate. Food Structure, 2019, 22, 100128.	4.5	3
11	Alkyl chain assisted thin film growth of 2,7-dioctyloxy-benzothienobenzothiophene. Journal of Materials Chemistry C, 2019, 7, 8477-8484.	5.5	11
12	Bayesian determination of the effect of a deep eutectic solvent on the structure of lipid monolayers. Physical Chemistry Chemical Physics, 2019, 21, 6133-6141.	2.8	9
13	Bottomâ€Up Fabrication of Semiconductive Metal–Organic Framework Ultrathin Films. Advanced Materials, 2018, 30, 1704291.	21.0	162
14	Influence of Poly(styrene- <i>co</i> -maleic acid) Copolymer Structure on the Properties and Self-Assembly of SMALP Nanodiscs. Biomacromolecules, 2018, 19, 761-772.	5.4	57
15	CO oxidation over supported gold nanoparticles as revealed by <i>operando</i> grazing incidence X-ray scattering analysis. Faraday Discussions, 2018, 208, 243-254.	3.2	13
16	Characterization of the Multi-Blade 10B-based detector at the CRISP reflectometer at ISIS for neutron reflectometry at ESS. Journal of Instrumentation, 2018, 13, P05009-P05009.	1.2	18
17	Hydrophobicity of surface-immobilised molecules influences architectures formed <i>via</i> interfacial self-assembly of nucleoside-based gelators. Soft Matter, 2018, 14, 9851-9855.	2.7	7
18	Lipid composition in fungal membrane models: effect of lipid fluidity. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1233-1244.	2.3	7

#	Article	IF	CITATIONS
19	An acid-compatible co-polymer for the solubilization of membranes and proteins into lipid bilayer-containing nanoparticles. Nanoscale, 2018, 10, 10609-10619.	5.6	91
20	Efficient long-range electron transfer processes in polyfluorene–perylene diimide blends. Nanoscale, 2018, 10, 10934-10944.	5.6	8
21	Highly Ordered Titanium Dioxide Nanostructures via a Simple One-Step Vapor-Inclusion Method in Block Copolymer Films. ACS Applied Nano Materials, 2018, 1, 3426-3434.	5.0	16
22	Counterion binding alters surfactant self-assembly in deep eutectic solvents. Physical Chemistry Chemical Physics, 2018, 20, 13952-13961.	2.8	30
23	Sample cell for studying liquid interfaces with an <i>inÂsitu</i> electric field using X-ray reflectivity and application to clay particles at oil–oil interfaces. Journal of Synchrotron Radiation, 2018, 25, 915-917.	2.4	1
24	Neutron reflectometry with the Multi-Blade ¹⁰ B-based detector. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180266.	2.1	11
25	Self-assembly and surface behaviour of pure and mixed zwitterionic amphiphiles in a deep eutectic solvent. Soft Matter, 2018, 14, 5525-5536.	2.7	30
26	Reversible restructuring of supported Au nanoparticles during butadiene hydrogenation revealed by operando GISAXS/GIWAXS. Chemical Communications, 2017, 53, 5159-5162.	4.1	13
27	Are organic films from atmospheric aerosol and sea water inert to oxidation by ozone at the air-water interface?. Atmospheric Environment, 2017, 161, 274-287.	4.1	15
28	Self-Assembly and Anti-Amyloid Cytotoxicity Activity of Amyloid beta Peptide Derivatives. Scientific Reports, 2017, 7, 43637.	3.3	47
29	Protein conformation in pure and hydrated deep eutectic solvents. Physical Chemistry Chemical Physics, 2017, 19, 8667-8670.	2.8	97
30	Changes to DPPC Domain Structure in the Presence of Carbon Nanoparticles. Langmuir, 2017, 33, 10374-10384.	3.5	28
31	Selective molecular annealing: in situ small angle X-ray scattering study of microwave-assisted annealing of block copolymers. Physical Chemistry Chemical Physics, 2017, 19, 20412-20419.	2.8	13
32	Resilience of Malic Acid Natural Deep Eutectic Solvent Nanostructure to Solidification and Hydration. Journal of Physical Chemistry B, 2017, 121, 7473-7483.	2.6	122
33	X-ray reflectivity reveals ionic structure at liquid crystal–aqueous interfaces. Soft Matter, 2017, 13, 5535-5542.	2.7	6
34	Surfactant–Solvent Interaction Effects on the Micellization of Cationic Surfactants in a Carboxylic Acid-Based Deep Eutectic Solvent. Langmuir, 2017, 33, 14304-14314.	3.5	56
35	An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins. PLoS ONE, 2017, 12, e0182016.	2.5	22
36	Micellization of alkyltrimethylammonium bromide surfactants in choline chloride:glycerol deep eutectic solvent. Physical Chemistry Chemical Physics, 2016, 18, 33240-33249.	2.8	53

#	Article	IF	CITATIONS
37	Micelle structure in a deep eutectic solvent: a small-angle scattering study. Physical Chemistry Chemical Physics, 2016, 18, 14063-14073.	2.8	55
38	Influence of solvent polarity on the structure of drop-cast electroactive tetra(aniline)-surfactant thin films. Physical Chemistry Chemical Physics, 2016, 18, 24498-24505.	2.8	22
39	Diamond beamline 107: a beamline for surface andÂinterface diffraction. Journal of Synchrotron Radiation, 2016, 23, 1245-1253.	2.4	51
40	Evidence of Lipid Exchange in Styrene Maleic Acid Lipid Particle (SMALP) Nanodisc Systems. Langmuir, 2016, 32, 11845-11853.	3.5	38
41	The Mixing Behavior of Alkanes Adsorbed on Hexagonal Boron Nitride. Journal of Physical Chemistry C, 2016, 120, 25796-25805.	3.1	8
42	Insights into the Influence of Solvent Polarity on the Crystallization of Poly(ethylene oxide) Spin-Coated Thin Films viain SituGrazing Incidence Wide-Angle X-ray Scattering. Macromolecules, 2016, 49, 4579-4586.	4.8	31
43	Langmuir monolayers composed of single and double tail sulfobetaine lipids. Journal of Colloid and Interface Science, 2016, 474, 190-198.	9.4	15
44	Structure of lipid multilayers <i>via</i> drop casting of aqueous liposome dispersions. Soft Matter, 2016, 12, 3877-3887.	2.7	34
45	Pentane Adsorbed on MgO(100) Surfaces: A Thermodynamic, Neutron, and Modeling Study. Journal of Physical Chemistry C, 2015, 119, 332-339.	3.1	10
46	Synthesis, Thermal Processing, and Thin Film Morphology of Poly(3-hexylthiophene)–Poly(styrenesulfonate) Block Copolymers. Macromolecules, 2015, 48, 2107-2117.	4.8	46
47	Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea. Langmuir, 2015, 31, 12894-12902.	3.5	105
48	Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B). Biochemistry, 2015, 54, 5185-5197.	2.5	27
49	Carbohydrate Conformation and Lipid Condensation in Monolayers Containing Glycosphingolipid Gb3: Influence of Acyl Chain Structure. Biophysical Journal, 2014, 107, 1146-1155.	0.5	28
50	Structure of Normal-Alkanes Adsorbed on Hexagonal-Boron Nitride. Journal of Physical Chemistry C, 2014, 118, 2418-2428.	3.1	11
51	Quiescent bilayers at the mica–water interface. Soft Matter, 2013, 9, 7028.	2.7	47
52	The role of protein hydrophobicity in thionin–phospholipid interactions: a comparison of α1 and α2-purothionin adsorbed anionic phospholipid monolayers. Physical Chemistry Chemical Physics, 2012, 14, 13569.	2.8	15
53	Structured oligo(aniline) nanofilms via ionic self-assembly. Soft Matter, 2012, 8, 2824-2832.	2.7	42
54	Investigation of the Adsorption of Alkanes on Hexagonal Boron Nitride from Their Liquids and Binary Mixtures. Journal of Physical Chemistry C, 2012, 116, 10599-10606.	3.1	8

#	Article	IF	CITATIONS
55	Diffraction from physisorbed layers. Current Opinion in Colloid and Interface Science, 2012, 17, 23-32.	7.4	15
56	Implementation of a beam deflection system for studies of liquid interfaces on beamline 107 at Diamond. Journal of Synchrotron Radiation, 2012, 19, 408-416.	2.4	38
57	Adsorption of Unsaturated Amides on a Graphite Surface: <i>trans</i> -Unsaturated Amides. Journal of Physical Chemistry C, 2011, 115, 6682-6689.	3.1	5
58	Phase Behavior of Heptanamide Adsorbed on a Graphite Substrate. Langmuir, 2011, 27, 15-18.	3.5	4
59	To Mix or Not To Mix: 2D Crystallization and Mixing Behavior of Saturated and Unsaturated Aliphatic Primary Amides. ACS Nano, 2011, 5, 9122-9137.	14.6	28
60	Omp85 from the Thermophilic Cyanobacterium Thermosynechococcus elongatus Differs from Proteobacterial Omp85 in Structure and Domain Composition. Journal of Biological Chemistry, 2010, 285, 18003-18015.	3.4	61
61	Crystalline Structures of Alkylamide Monolayers Adsorbed on the Surface of Graphite. Langmuir, 2010, 26, 8201-8206.	3.5	25
62	The Structure of Dodecanamide Monolayers Adsorbed on Graphite. , 2010, , 5-8.		1
63	Structure and Function of Colicin S4, a Colicin with a Duplicated Receptor-binding Domain. Journal of Biological Chemistry, 2009, 284, 6403-6413.	3.4	33
64	Melting of thin films of alkanes on magnesium oxide. European Physical Journal: Special Topics, 2009, 167, 143-150.	2.6	3
65	Neutron Investigations of Rotational Motions in Monolayer and Multilayer Films at the Interface of MgO and Graphite Surfaces. Langmuir, 2009, 25, 4078-4083.	3.5	14
66	The Use of Detergents to Purify Membrane Proteins. Current Protocols in Protein Science, 2008, 53, Unit 4.8.1-4.8.30.	2.8	79
67	Thermodynamic Investigation of the Adsorption of Amides on Graphite from Their Liquids and Binary Mixtures. Langmuir, 2008, 24, 3325-3335.	3.5	23
68	Direct Observation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:msub> <mml:mi mathvariant="normal">H <mml:mn>2</mml:mn> </mml:mi </mml:msub> </mml:math> Binding to a Metal Oxide Surface, Physical Review Letters, 2008, 101, 165302	7.8	39
69	Gene Duplication of the Eight-stranded β-Barrel OmpX Produces a Functional Pore: A Scenario for the Evolution of Transmembrane β-Barrels. Journal of Molecular Biology, 2007, 366, 1174-1184.	4.2	86
70	Phase separation in the isolation and purification of membrane proteins. BioTechniques, 2007, 43, 427-440.	1.8	81
71	Neutron scattering and thermodynamic investigations of thin films of n-alkanes adsorbed on MgO(100) surfaces. Physica B: Condensed Matter, 2006, 385-386, 205-207.	2.7	14
72	Direct observation of molecular hydrogen binding to magnesium oxide (100) surfaces. Physica B: Condensed Matter, 2006, 385-386, 144-146.	2.7	13

#	Article	IF	CITATIONS
73	Structure of ann-butane monolayer adsorbed on magnesium oxide (100). Physical Review B, 2006, 74, .	3.2	23
74	Thermodynamic Investigation of Thin Films of Ethane Adsorbed on Magnesium Oxide. Journal of Physical Chemistry B, 2005, 109, 8799-8805.	2.6	17
75	Alkane/Alcohol Mixed Monolayers at the Solid/Liquid Interface. Langmuir, 2005, 21, 5085-5093.	3.5	32
76	Enhanced Bose–Einstein condensation and kinetic energy of liquid4He near a free surface. Journal of Physics Condensed Matter, 2004, 16, 4391-4402.	1.8	12
77	A quantitative parameter for predicting mixing behaviour in adsorbed layers: the 2D isomorphism coefficient. Chemical Physics Letters, 2003, 373, 480-485.	2.6	26
78	The crystalline structures of the odd alkanes pentane, heptane, nonane, undecane, tridecane and pentadecane monolayers adsorbed on graphite at submonolayer coverages and from the liquidElectronic supplementary information (ESI) available: Fractional coordinates of single repeat units of some alkanes at sub-monolayer coverage and of the monolayer coexisting with the liquid. See	2.8	62
79	Mixing Behavior at the Solid/Liquid Interface:Â Binary Monolayers of Linear Alcohols Adsorbed on Graphite. Langmuir, 2002, 18, 4010-4013.	3.5	18
80	The crystalline structures of the even alkanes hexane, octane, decane, dodecane and tetradecane monolayers adsorbed on graphite at submonolayer coverages and from the liquidElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b108190j/. Physical Chemistry Chemical Physics, 2002, 4, 345-351.	2.8	84
81	Linear alcohols adsorbed on graphite from the liquid. Applied Physics A: Materials Science and Processing, 2002, 74, s1072-s1073.	2.3	6
82	Simultaneous coherent and incoherent neutron scattering of polyalcohols adsorbed on ice. Applied Physics A: Materials Science and Processing, 2002, 74, s1371-s1372.	2.3	0
83	Mixing behaviour in 2D layers of linear alkanes adsorbed on graphite. Chemical Physics Letters, 2002, 352, 57-62.	2.6	16
84	Adsorption behaviour of the binary mixtures of octane and nonane at sub-monolayer coverage on graphite. Physical Chemistry Chemical Physics, 2001, 3, 3774-3777.	2.8	18
85	Preferential Adsorption from Binary Mixtures of Short Chain n-Alkanes; The Octaneâ `Decane System. Journal of Physical Chemistry B, 2001, 105, 8577-8582.	2.6	33
86	Solid monolayers of heptane adsorbed to graphite from its liquid. Journal of Physics and Chemistry of Solids, 1999, 60, 1495-1497.	4.0	9
87	Calorimetric Investigation of the Monolayers Formed At Solid-liquid Interface. Magyar Apróvad Közlemények, 1999, 57, 643-651.	1.4	29
88	Anomalous behaviour of pentane adsorbed at the graphite/liquid interface. Physical Chemistry Chemical Physics, 1999, 1, 5203-5207.	2.8	24
89	The investigation of mixed monolayers adsorbed from solution: octane and nonane mixtures on graphite. Physical Chemistry Chemical Physics, 1999, 1, 5017-5023.	2.8	26
90	Competitive Adsorption of Simple Linear Alkane Mixtures onto Graphite. Journal of Physical Chemistry B, 1998, 102, 10528-10534.	2.6	63

#	Article	IF	CITATIONS
91	Changes to lung surfactant monolayers upon exposure to gas phase ozone observed using X-ray and neutron reflectivity. Environmental Science Atmospheres, 0, , .	2.4	0
92	The Sixteenth International Conference on Surface X-ray and Neutron Scattering (SXNS16). Synchrotron Radiation News, 0, , 1-2.	0.8	0