
Maurizio Corbetta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1578756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 2002, 3, 201-215.	10.2	10,175
2	The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9673-9678.	7.1	7,496
3	The Reorienting System of the Human Brain: From Environment to Theory of Mind. Neuron, 2008, 58, 306-324.	8.1	3,275
4	Dynamic functional connectivity: Promise, issues, and interpretations. NeuroImage, 2013, 80, 360-378.	4.2	2,358
5	Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10046-10051.	7.1	1,843
6	Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13170-13175.	7.1	1,716
7	Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience, 1997, 9, 648-663.	2.3	1,690
8	Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 2000, 3, 292-297.	14.8	1,622
9	A Common Network of Functional Areas for Attention and Eye Movements. Neuron, 1998, 21, 761-773.	8.1	1,498
10	Function in the human connectome: Task-fMRI and individual differences in behavior. NeuroImage, 2013, 80, 169-189.	4.2	1,259
11	Spatial Neglect and Attention Networks. Annual Review of Neuroscience, 2011, 34, 569-599.	10.7	1,053
12	Large-scale cortical correlation structure of spontaneous oscillatory activity. Nature Neuroscience, 2012, 15, 884-890.	14.8	989
13	Breakdown of Functional Connectivity in Frontoparietal Networks Underlies Behavioral Deficits in Spatial Neglect. Neuron, 2007, 53, 905-918.	8.1	851
14	Neural basis and recovery of spatial attention deficits in spatial neglect. Nature Neuroscience, 2005, 8, 1603-1610.	14.8	765
15	Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17558-17563.	7.1	708
16	Superior Parietal Cortex Activation During Spatial Attention Shifts and Visual Feature Conjunction. Science, 1995, 270, 802-805.	12.6	698
17	Temporal dynamics of spontaneous MEG activity in brain networks. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6040-6045.	7.1	664
18	Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Annals of Neurology, 2010, 67, 365-375.	5.3	657

#	Article	IF	CITATIONS
19	Neural Systems for Visual Orienting and Their Relationships to Spatial Working Memory. Journal of Cognitive Neuroscience, 2002, 14, 508-523.	2.3	593
20	Functional Organization of Human Intraparietal and Frontal Cortex for Attending, Looking, and Pointing. Journal of Neuroscience, 2003, 23, 4689-4699.	3.6	584
21	Extrastriate body area in human occipital cortex responds to the performance of motor actions. Nature Neuroscience, 2004, 7, 542-548.	14.8	561
22	Top-Down Control of Human Visual Cortex by Frontal and Parietal Cortex in Anticipatory Visual Spatial Attention. Journal of Neuroscience, 2008, 28, 10056-10061.	3.6	510
23	An Event-Related Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of Attention. Journal of Neuroscience, 2005, 25, 4593-4604.	3.6	487
24	Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4367-76.	7.1	477
25	Resting-State Functional Connectivity Emerges from Structurally and Dynamically Shaped Slow Linear Fluctuations. Journal of Neuroscience, 2013, 33, 11239-11252.	3.6	476
26	Functional network dysfunction in anxiety and anxiety disorders. Trends in Neurosciences, 2012, 35, 527-535.	8.6	451
27	Right Hemisphere Dominance during Spatial Selective Attention and Target Detection Occurs Outside the Dorsal Frontoparietal Network. Journal of Neuroscience, 2010, 30, 3640-3651.	3.6	445
28	Episodic Memory Retrieval, Parietal Cortex, and the Default Mode Network: Functional and Topographic Analyses. Journal of Neuroscience, 2011, 31, 4407-4420.	3.6	439
29	Frontoparietal Cortex Controls Spatial Attention through Modulation of Anticipatory Alpha Rhythms. Journal of Neuroscience, 2009, 29, 5863-5872.	3.6	411
30	A Cortical Core for Dynamic Integration of Functional Networks in the Resting Human Brain. Neuron, 2012, 74, 753-764.	8.1	396
31	Common Behavioral Clusters and Subcortical Anatomy in Stroke. Neuron, 2015, 85, 927-941.	8.1	353
32	Interaction of Stimulus-Driven Reorienting and Expectation in Ventral and Dorsal Frontoparietal and Basal Ganglia-Cortical Networks. Journal of Neuroscience, 2009, 29, 4392-4407.	3.6	342
33	How Local Excitation-Inhibition Ratio Impacts the Whole Brain Dynamics. Journal of Neuroscience, 2014, 34, 7886-7898.	3.6	303
34	The Dynamical Balance of the Brain at Rest. Neuroscientist, 2011, 17, 107-123.	3.5	282
35	Areas Involved in Encoding and Applying Directional Expectations to Moving Objects. Journal of Neuroscience, 1999, 19, 9480-9496.	3.6	272
36	Evolutionarily Novel Functional Networks in the Human Brain?. Journal of Neuroscience, 2013, 33, 3259-3275.	3.6	266

#	Article	IF	CITATIONS
37	Why use a connectivity-based approach to study stroke and recovery of function?. NeuroImage, 2012, 62, 2271-2280.	4.2	258
38	Data Quality Influences Observed Links Between Functional Connectivity and Behavior. Cerebral Cortex, 2017, 27, 4492-4502.	2.9	246
39	Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19066-19071.	7.1	241
40	Individual variability in functional connectivity predicts performance of a perceptual task. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3516-3521.	7.1	235
41	Quantitative Analysis of Attention and Detection Signals During Visual Search. Journal of Neurophysiology, 2003, 90, 3384-3397.	1.8	234
42	Right TPJ Deactivation during Visual Search: Functional Significance and Support for a Filter Hypothesis. Cerebral Cortex, 2007, 17, 2625-2633.	2.9	228
43	Resting state network estimation in individual subjects. NeuroImage, 2013, 82, 616-633.	4.2	226
44	The contribution of the human posterior parietal cortex to episodic memory. Nature Reviews Neuroscience, 2017, 18, 183-192.	10.2	224
45	Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity. PLoS Computational Biology, 2015, 11, e1004100.	3.2	216
46	Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. Nature Neuroscience, 2008, 11, 1446-1453.	14.8	193
47	Adding dynamics to the Human Connectome Project with MEG. NeuroImage, 2013, 80, 190-201.	4.2	189
48	Upstream Dysfunction of Somatomotor Functional Connectivity After Corticospinal Damage in Stroke. Neurorehabilitation and Neural Repair, 2012, 26, 7-19.	2.9	183
49	Human cortical mechanisms of visual attention during orienting and search. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1353-1362.	4.0	177
50	Common Blood Flow Changes across Visual Tasks: I. Increases in Subcortical Structures and Cerebellum but Not in Nonvisual Cortex. Journal of Cognitive Neuroscience, 1997, 9, 624-647.	2.3	176
51	Natural Scenes Viewing Alters the Dynamics of Functional Connectivity in the Human Brain. Neuron, 2013, 79, 782-797.	8.1	175
52	Re-emergence of modular brain networks in stroke recovery. Cortex, 2018, 101, 44-59.	2.4	173
53	The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nature Communications, 2019, 10, 1417.	12.8	171
54	Functional connectivity in resting-state fMRI: Is linear correlation sufficient?. Neurolmage, 2011, 54, 2218-2225.	4.2	166

#	Article	IF	CITATIONS
55	Post-stroke deficit prediction from lesion and indirect structural and functional disconnection. Brain, 2020, 143, 2173-2188.	7.6	166
56	Clustering of Resting State Networks. PLoS ONE, 2012, 7, e40370.	2.5	162
57	Dynamic reorganization of human resting-state networks during visuospatial attention. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8112-8117.	7.1	160
58	Large-scale changes in network interactions as a physiological signature of spatial neglect. Brain, 2014, 137, 3267-3283.	7.6	159
59	A Human Depression Circuit Derived From Focal Brain Lesions. Biological Psychiatry, 2019, 86, 749-758.	1.3	158
60	Word Retrieval Learning Modulates Right Frontal Cortex in Patients with Left Frontal Damage. Neuron, 2002, 36, 159-170.	8.1	149
61	Large-scale brain networks account for sustained and transient activity during target detection. NeuroImage, 2009, 44, 265-274.	4.2	145
62	Preserved speech abilities and compensation following prefrontal damage Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1249-1253.	7.1	144
63	Two Attentional Processes in the Parietal Lobe. Cerebral Cortex, 2002, 12, 1124-1131.	2.9	131
64	Structural Disconnections Explain Brain Network Dysfunction after Stroke. Cell Reports, 2019, 28, 2527-2540.e9.	6.4	129
65	A Novel Data-Driven Approach to Preoperative Mapping of Functional Cortex Using Resting-State Functional Magnetic Resonance Imaging. Neurosurgery, 2013, 73, 969-983.	1.1	126
66	Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure. NeuroImage, 2013, 79, 172-183.	4.2	118
67	Frequency-specific electrophysiologic correlates of resting state fMRI networks. NeuroImage, 2017, 149, 446-457.	4.2	118
68	Attention to Memory and the Environment: Functional Specialization and Dynamic Competition in Human Posterior Parietal Cortex. Journal of Neuroscience, 2010, 30, 8445-8456.	3.6	115
69	A Behavioral Analysis of Spatial Neglect and its Recovery After Stroke. Frontiers in Human Neuroscience, 2011, 5, 29.	2.0	113
70	Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nature Human Behaviour, 2021, 5, 1707-1716.	12.0	113
71	The role of impaired neuronal communication in neurological disorders. Current Opinion in Neurology, 2007, 20, 655-660.	3.6	112
72	Impaired and facilitated functional networks in temporal lobe epilepsy. NeuroImage: Clinical, 2013, 2, 862-872.	2.7	111

#	Article	IF	CITATIONS
73	A human memory circuit derived from brain lesions causing amnesia. Nature Communications, 2019, 10, 3497.	12.8	108
74	Separate Modulations of Human V1 Associated with Spatial Attention and Task Structure. Neuron, 2006, 51, 135-147.	8.1	106
75	A Signal-Processing Pipeline for Magnetoencephalography Resting-State Networks. Brain Connectivity, 2011, 1, 49-59.	1.7	105
76	Asymmetry of Anticipatory Activity in Visual Cortex Predicts the Locus of Attention and Perception. Journal of Neuroscience, 2007, 27, 14424-14433.	3.6	104
77	The evolution of the temporoparietal junction and posterior superior temporal sulcus. Cortex, 2019, 118, 38-50.	2.4	104
78	Brain signals for spatial attention predict performance in a motion discrimination task. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17810-17815.	7.1	103
79	Neurological Principles and Rehabilitation of Action Disorders. Neurorehabilitation and Neural Repair, 2011, 25, 33S-43S.	2.9	103
80	Interspecies activity correlations reveal functional correspondence between monkey and human brain areas. Nature Methods, 2012, 9, 277-282.	19.0	101
81	Normalization of network connectivity in hemispatial neglect recovery. Annals of Neurology, 2016, 80, 127-141.	5.3	101
82	The effects of hemodynamic lag on functional connectivity and behavior after stroke. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 2162-2176.	4.3	101
83	Brain connectivity and neurological disorders after stroke. Current Opinion in Neurology, 2016, 29, 706-713.	3.6	96
84	The secret life of predictive brains: what's spontaneous activity for?. Trends in Cognitive Sciences, 2021, 25, 730-743.	7.8	94
85	A functional MRI study of preparatory signals for spatial location and objects. Neuropsychologia, 2005, 43, 2041-2056.	1.6	93
86	Cortical cores in network dynamics. NeuroImage, 2018, 180, 370-382.	4.2	93
87	Visuospatial reorienting signals in the human temporo-parietal junction are independent of response selection. European Journal of Neuroscience, 2006, 23, 591-596.	2.6	92
88	Is the Posner Reaction Time Test More Accurate Than Clinical Tests in Detecting Left Neglect in Acute and Chronic Stroke?. Archives of Physical Medicine and Rehabilitation, 2009, 90, 2081-2088.	0.9	91
89	Dissociated functional connectivity profiles for motor and attention deficits in acute right-hemisphere stroke. Brain, 2016, 139, 2024-2038.	7.6	91
90	Frequency-specific mechanism links human brain networks for spatial attention. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19585-19590.	7.1	88

#	Article	IF	CITATIONS
91	Distribution of Activity Across the Monkey Cerebral Cortical Surface, Thalamus and Midbrain during Rapid, Visually Guided Saccades. Cerebral Cortex, 2006, 16, 447-459.	2.9	86
92	Domain-general Signals in the Cingulo-opercular Network for Visuospatial Attention and Episodic Memory. Journal of Cognitive Neuroscience, 2014, 26, 551-568.	2.3	84
93	Functional evolution of new and expanded attention networks in humans. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9454-9459.	7.1	81
94	Functional reorganization and stability of somatosensory-motor cortical topography in a tetraplegic subject with late recovery. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 17066-17071.	7.1	80
95	Neurological Principles and Rehabilitation of Action Disorders. Neurorehabilitation and Neural Repair, 2011, 25, 21S-32S.	2.9	78
96	Functional connectivity and neurological recovery. Developmental Psychobiology, 2012, 54, 239-253.	1.6	77
97	Decreased integration and information capacity in stroke measured by whole brain models of resting state activity. Brain, 2017, 140, 1068-1085.	7.6	77
98	Differential Contribution of Right and Left Parietal Cortex to the Control of Spatial Attention: A Simultaneous EEG-rTMS Study. Cerebral Cortex, 2012, 22, 446-454.	2.9	71
99	Prediction of Discharge Walking Ability From Initial Assessment in a Stroke Inpatient Rehabilitation Facility Population. Archives of Physical Medicine and Rehabilitation, 2012, 93, 1441-1447.	0.9	71
100	A Comparison of Shallow and Deep Learning Methods for Predicting Cognitive Performance of Stroke Patients From MRI Lesion Images. Frontiers in Neuroinformatics, 2019, 13, 53.	2.5	70
101	Searching for activations that generalize over tasks. , 1997, 5, 317-322.		68
102	Anticipatory and Stimulus-Evoked Blood Oxygenation Level-Dependent Modulations Related to Spatial Attention Reflect a Common Additive Signal. Journal of Neuroscience, 2009, 29, 10671-10682.	3.6	68
103	On the low dimensionality of behavioral deficits and alterations of brain network connectivity after focal injury. Cortex, 2018, 107, 229-237.	2.4	68
104	Oculomotor activity and visual spatial attention. Behavioural Brain Research, 1995, 71, 81-88.	2.2	67
105	Comment on "Modafinil Shifts Human Locus Coeruleus to Low-Tonic, High-Phasic Activity During Functional MRI―and "Homeostatic Sleep Pressure and Responses to Sustained Attention in the Suprachiasmatic Area― Science, 2010, 328, 309-309.	12.6	66
106	Anatomical Correlates of Directional Hypokinesia in Patients with Hemispatial Neglect. Journal of Neuroscience, 2007, 27, 4045-4051.	3.6	65
107	Measuring functional connectivity in stroke: Approaches and considerations. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2665-2678.	4.3	65
108	The McCollough effect reveals orientation discrimination in a case of cortical blindness. Current Biology, 1995, 5, 545-551.	3.9	64

#	Article	IF	CITATIONS
109	Influence of Stimulus Salience and Attentional Demands on Visual Search Patterns in Hemispatial Neglect. Brain and Cognition, 1997, 34, 388-403.	1.8	63
110	Topographic organization of macaque area LIP. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4728-4733.	7.1	62
111	Neurological Principles and Rehabilitation of Action Disorders. Neurorehabilitation and Neural Repair, 2011, 25, 6S-20S.	2.9	62
112	Interference with episodic memory retrieval following transcranial stimulation of the inferior but not the superior parietal lobule. Neuropsychologia, 2013, 51, 900-906.	1.6	60
113	Resting State Functional Connectivity of the Ventral Attention Network in Children With a History of Depression or Anxiety. Journal of the American Academy of Child and Adolescent Psychiatry, 2013, 52, 1326-1336.e5.	0.5	60
114	Lesion Quantification Toolkit: A MATLAB software tool for estimating grey matter damage and white matter disconnections in patients with focal brain lesions. NeuroImage: Clinical, 2021, 30, 102639.	2.7	60
115	Warnings and caveats in brain controllability. NeuroImage, 2018, 176, 83-91.	4.2	57
116	Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. NeuroImage, 2018, 180, 534-546.	4.2	57
117	Anticipatory Suppression of Nonattended Locations in Visual Cortex Marks Target Location and Predicts Perception. Journal of Neuroscience, 2008, 28, 6549-6556.	3.6	53
118	Dorsal and Ventral Attention Systems Underlie Social and Symbolic Cueing. Journal of Cognitive Neuroscience, 2014, 26, 63-80.	2.3	52
119	Damage to the shortest structural paths between brain regions is associated with disruptions of resting-state functional connectivity after stroke. NeuroImage, 2020, 210, 116589.	4.2	51
120	Abnormal White Matter Blood-Oxygen-Level–Dependent Signals in Chronic Mild Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1254-1271.	3.4	50
121	Unravelling nonverbal cognitive performance in acquired aphasia. Aphasiology, 2009, 23, 1418-1426.	2.2	49
122	A New Modular Brain Organization of the BOLD Signal during Natural Vision. Cerebral Cortex, 2018, 28, 3065-3081.	2.9	49
123	Reactivation of Networks Involved in Preparatory States. Cerebral Cortex, 2002, 12, 590-600.	2.9	48
124	Measuring Granger Causality between Cortical Regions from Voxelwise fMRI BOLD Signals with LASSO. PLoS Computational Biology, 2012, 8, e1002513.	3.2	47
125	Using ipsilateral motor signals in the unaffected cerebral hemisphere as a signal platform for brain–computer interfaces in hemiplegic stroke survivors. Journal of Neural Engineering, 2012, 9, 036011.	3.5	47
126	Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information. Journal of Neuroscience, 2015, 35, 9786-9798.	3.6	47

#	Article	IF	CITATIONS
127	Changing Human Visual Field Organization from Early Visual to Extra-Occipital Cortex. PLoS ONE, 2007, 2, e452.	2.5	45
128	Post-stroke outcomes predicted from multivariate lesion-behaviour and lesion network mapping. Brain, 2022, 145, 1338-1353.	7.6	45
129	Anatomical Segregation of Visual Selection Mechanisms in Human Parietal Cortex. Journal of Neuroscience, 2013, 33, 6225-6229.	3.6	43
130	Sequential activation of human oculomotor centers during planning of visually-guided eye movements: a combined fMRI-MEG study. Frontiers in Human Neuroscience, 2008, 1, 1.	2.0	42
131	The circuitry of abulia: Insights from functional connectivity MRI. NeuroImage: Clinical, 2014, 6, 320-326.	2.7	42
132	Hemispatial Neglect: Clinic, Pathogenesis, and Treatment. Seminars in Neurology, 2014, 34, 514-523.	1.4	42
133	Electrophysiological Correlates of Stimulus-driven Reorienting Deficits after Interference with Right Parietal Cortex during a Spatial Attention Task: A TMS-EEG Study. Journal of Cognitive Neuroscience, 2012, 24, 2363-2371.	2.3	41
134	Resting-state Modulation of Alpha Rhythms by Interference with Angular Gyrus Activity. Journal of Cognitive Neuroscience, 2014, 26, 107-119.	2.3	41
135	Differential white matter involvement associated with distinct visuospatial deficits after right hemisphere stroke. Cortex, 2017, 88, 81-97.	2.4	41
136	Task and Regions Specific Top-Down Modulation of Alpha Rhythms in Parietal Cortex. Cerebral Cortex, 2017, 27, 4815-4822.	2.9	41
137	Model-based whole-brain effective connectivity to study distributed cognition in health and disease. Network Neuroscience, 2020, 4, 338-373.	2.6	40
138	Is the extrastriate body area involved in motor actions?. Nature Neuroscience, 2005, 8, 125-126.	14.8	38
139	Spontaneous Beta Band Rhythms in the Predictive Coding of Natural Stimuli. Neuroscientist, 2021, 27, 184-201.	3.5	38
140	Aphasia severity, semantics, and depression predict functional communication in acquired aphasia. Aphasiology, 2006, 20, 449-461.	2.2	37
141	Filling in the gaps: Anticipatory control of eye movements in chronic mild traumatic brain injury. NeuroImage: Clinical, 2015, 8, 210-223.	2.7	37
142	Exploring the physiological correlates of chronic mild traumatic brain injury symptoms. NeuroImage: Clinical, 2016, 11, 10-19.	2.7	37
143	Distinct representations for shifts of spatial attention and changes of reward contingencies in the human brain. Cortex, 2013, 49, 1733-1749.	2.4	36
144	The Brain Recovery Core. Journal of Neurologic Physical Therapy, 2011, 35, 194-201.	1.4	35

#	Article	IF	CITATIONS
145	Homeostatic plasticity and emergence of functional networks in a whole-brain model at criticality. Scientific Reports, 2018, 8, 15682.	3.3	35
146	Sparse DCM for whole-brain effective connectivity from resting-state fMRI data. NeuroImage, 2020, 208, 116367.	4.2	35
147	Clinician Adherence to a Standardized Assessment Battery Across Settings and Disciplines in a Poststroke RehabilitationÂPopulation. Archives of Physical Medicine and Rehabilitation, 2013, 94, 1048-1053.e1.	0.9	34
148	Stronger prediction of motor recovery and outcome post-stroke by cortico-spinal tract integrity than functional connectivity. PLoS ONE, 2018, 13, e0202504.	2.5	34
149	Cerebellar activity switches hemispheres with cerebral recovery in aphasia. Neuropsychologia, 2006, 44, 171-177.	1.6	33
150	Response to Comment on "Modafinil Shifts Human Locus Coeruleus to Low-Tonic, High-Phasic Activity During Functional MRI― Science, 2010, 328, 309-309.	12.6	33
151	Ten years of Nature Reviews Neuroscience: insights from the highly cited. Nature Reviews Neuroscience, 2010, 11, 718-726.	10.2	32
152	Multimodal Integration of fMRI and EEG Data for High Spatial and Temporal Resolution Analysis of Brain Networks. Brain Topography, 2010, 23, 150-158.	1.8	31
153	Topology of Functional Connectivity and Hub Dynamics in the Beta Band As Temporal Prior for Natural Vision in the Human Brain. Journal of Neuroscience, 2018, 38, 3858-3871.	3.6	31
154	Linking Entropy at Rest with the Underlying Structural Connectivity in the Healthy and Lesioned Brain. Cerebral Cortex, 2018, 28, 2948-2958.	2.9	31
155	Data-driven analysis of analogous brain networks in monkeys and humans during natural vision. NeuroImage, 2012, 63, 1107-1118.	4.2	30
156	Decision and action planning signals in human posterior parietal cortex during delayed perceptual choices. European Journal of Neuroscience, 2014, 39, 1370-1383.	2.6	30
157	Multivariate Lesion-Behavior Mapping of General Cognitive Ability and Its Psychometric Constituents. Journal of Neuroscience, 2020, 40, 8924-8937.	3.6	29
158	Top-down cortical interactions in visuospatial attention. Brain Structure and Function, 2017, 222, 3127-3145.	2.3	28
159	The future of human behaviour research. Nature Human Behaviour, 2022, 6, 15-24.	12.0	28
160	Memory Accumulation Mechanisms in Human Cortex Are Independent of Motor Intentions. Journal of Neuroscience, 2014, 34, 6993-7006.	3.6	27
161	Dynamics of EEG Rhythms Support Distinct Visual Selection Mechanisms in Parietal Cortex: A Simultaneous Transcranial Magnetic Stimulation and EEG Study. Journal of Neuroscience, 2015, 35, 721-730.	3.6	27
162	Distinct phase-amplitude couplings distinguish cognitive processes in human attention. NeuroImage, 2018, 175, 111-121.	4.2	26

#	Article	IF	CITATIONS
163	Positron emission tomography as a tool to study human vision and attention. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10901-10903.	7.1	25
164	Identification of Cerebral Networks by Classification of the Shape of BOLD Responses. Journal of Neurophysiology, 2003, 90, 360-371.	1.8	25
165	Selective Attention Modulates Extrastriate Visual Regions in Humans During Visual Feature Discrimination and Recognition. Novartis Foundation Symposium, 1991, 163, 165-180.	1.1	24
166	Brain networks' functional connectivity separates aphasic deficits in stroke. Neurology, 2019, 92, e125-e135.	1.1	24
167	Distinct modes of functional connectivity induced by movie-watching. NeuroImage, 2019, 184, 335-348.	4.2	23
168	Recovery of neural dynamics criticality in personalized whole-brain models of stroke. Nature Communications, 2022, 13, .	12.8	22
169	Brain PET and functional MRI: why simultaneously using hybrid PET/MR systems?. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2017, 61, 345-359.	0.7	21
170	Breakdown of specific functional brain networks in clinical variants of Alzheimer's disease. Ageing Research Reviews, 2021, 72, 101482.	10.9	21
171	Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction. Brain Structure and Function, 2015, 220, 2587-2601.	2.3	20
172	Multiple Network Disconnection in Anosognosia for Hemiplegia. Frontiers in Systems Neuroscience, 2020, 14, 21.	2.5	20
173	Thumb-pointing in humans after damage to somatic sensory cortex. Experimental Brain Research, 1996, 109, 92-100.	1.5	17
174	Widespread cortical functional disconnection in gliomas: an individual network mapping approach. Brain Communications, 2022, 4, fcac082.	3.3	17
175	A process for translating evidence-based aphasia treatment into clinical practice. Aphasiology, 2005, 19, 411-422.	2.2	16
176	Magnetic stimulation of visual cortex impairs perceptual learning. NeuroImage, 2016, 143, 250-255.	4.2	16
177	Safety and efficacy of edaravone compared to historical controls in patients with amyotrophic lateral sclerosis from North-Eastern Italy. Journal of the Neurological Sciences, 2019, 404, 47-51.	0.6	16
178	Brain network modulation in Alzheimer's and frontotemporal dementia with transcranial electrical stimulation. Neurobiology of Aging, 2022, 111, 24-34.	3.1	16
179	The effect of age on human motor electrocorticographic signals and implications for brain–computer interface applications. Journal of Neural Engineering, 2011, 8, 046013.	3.5	15
180	Descriptive Data Analysis Examining How Standardized Assessments Are Used to Guide Post–Acute Discharge Recommendations for Rehabilitation Services After Stroke. Physical Therapy, 2015, 95, 710-719.	2.4	15

#	Article	IF	CITATIONS
181	The Impact of the Geometric Correction Scheme on MEG Functional Topology at Rest. Frontiers in Neuroscience, 2019, 13, 1114.	2.8	15
182	Archetypes of human cognition defined by time preference for reward and their brain correlates: An evolutionary trade-off approach. NeuroImage, 2019, 185, 322-334.	4.2	15
183	A low-dimensional structure of neurological impairment in stroke. Brain Communications, 2021, 3, fcab119.	3.3	15
184	Effective connectivity extracts clinically relevant prognostic information from resting state activity in stroke. Brain Communications, 2021, 3, fcab233.	3.3	15
185	A novel stroke lesion network mapping approach: improved accuracy yet still low deficit prediction. Brain Communications, 2021, 3, fcab259.	3.3	15
186	Edge-centric analysis of stroke patients: An alternative approach for biomarkers of lesion recovery. NeuroImage: Clinical, 2022, 35, 103055.	2.7	15
187	Attentional selection of moving objects by a serial process. Vision Research, 2006, 46, 3403-3412.	1.4	14
188	Brain Mapping in a Patient with Congenital Blindness – A Case for Multimodal Approaches. Frontiers in Human Neuroscience, 2013, 7, 431.	2.0	14
189	Early diffusion evidence of retrograde transsynaptic degeneration in the human visual system. Neurology, 2016, 87, 198-205.	1.1	14
190	TMS-EEG Biomarkers of Amnestic Mild Cognitive Impairment Due to Alzheimer's Disease: A Proof-of-Concept Six Years Prospective Study. Frontiers in Aging Neuroscience, 2021, 13, 737281.	3.4	14
191	The Study of Neural Connectivity Using Diffusion Tensor Tracking. Cortex, 2004, 40, 213-215.	2.4	13
192	Reply: Lesion network mapping: where do we go from here?. Brain, 2021, 144, e6-e6.	7.6	13
193	Reply: Lesion network mapping predicts post-stroke behavioural deficits and improves localization. Brain, 2021, 144, e36-e36.	7.6	13
194	Neuroimaging. Current Opinion in Neurobiology, 1992, 2, 217-222.	4.2	12
195	Brain controllability: Not a slam dunk yet. Neurolmage, 2019, 200, 552-555.	4.2	12
196	Task-Evoked BOLD Responses Are Normal in Areas of Diaschisis After Stroke. Neurorehabilitation and Neural Repair, 2009, 23, 52-57.	2.9	11
197	False Belief vs. False Photographs: A Test of Theory of Mind or Working Memory?. Frontiers in Psychology, 2011, 2, 316.	2.1	11
198	Spontaneously emerging patterns in human visual cortex and their functional connectivity are linked to the patterns evoked by visual stimuli. Journal of Neurophysiology, 2020, 124, 1343-1363.	1.8	11

#	Article	IF	CITATIONS
199	Multi-band MEG signatures of BOLD connectivity reorganization during visuospatial attention. NeuroImage, 2021, 230, 117781.	4.2	11
200	Directed Flow of Beta Band Communication During Reorienting of Attention Within the Dorsal Attention Network. Brain Connectivity, 2021, 11, 717-724.	1.7	11
201	Spectral signature of attentional reorienting in the human brain. NeuroImage, 2021, 244, 118616.	4.2	11
202	Common and unique structural plasticity after left and right hemisphere stroke. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3350-3364.	4.3	10
203	Unveiling wholeâ€brain dynamics in normal aging through Hidden Markov Models. Human Brain Mapping, 2022, 43, 1129-1144.	3.6	10
204	Post-stroke reorganization of transient brain activity characterizes deficits and recovery of cognitive functions. Neurolmage, 2022, 255, 119201.	4.2	10
205	Models of human visual attention should consider trial-by-trial variability in preparatory neural signals. Neural Networks, 2006, 19, 1447-1449.	5.9	9
206	Focal left prefrontal lesions and cognitive impairment: A multivariate lesion-symptom mapping approach. Neuropsychologia, 2020, 136, 107253.	1.6	9
207	White matter abnormalities of right hemisphere attention networks contribute to visual hallucinations in dementia with Lewy bodies. Cortex, 2021, 139, 86-98.	2.4	9
208	Orienting to the EnvironmentSeparate Contributions of Dorsal and Ventral Frontoparietal Attention Networks. , 2012, , 100-130.		9
209	Alertness Training Improves Spatial Bias and Functional Ability in Spatial Neglect. Annals of Neurology, 2020, 88, 747-758.	5.3	8
210	Stroke-related alterations in inter-areal communication. NeuroImage: Clinical, 2021, 32, 102812.	2.7	8
211	Visual exploration dynamics are low-dimensional and driven by intrinsic factors. Communications Biology, 2021, 4, 1100.	4.4	8
212	Opinion, knowledge, and clinical experience with functional neurological disorders among Italian neurologists: results from an online survey. Journal of Neurology, 2022, 269, 2549-2559.	3.6	8
213	Losing our Brainless Minds: How Neuroimaging Informs Cognition. Cortex, 2006, 42, 418-421.	2.4	7
214	A Novel Gradient Echo Plural Contrast Imaging Method Detects Brain Tissue Abnormalities in Patients With TBI Without Evident Anatomical Changes on Clinical MRI: A Pilot Study. Military Medicine, 2019, 184, 218-227.	0.8	7
215	Variability of regional glucose metabolism and the topology of functional networks in the human brain. Neurolmage, 2022, 257, 119280.	4.2	7
216	Neural Rehabilitation. Neurorehabilitation and Neural Repair, 2011, 25, 3S-5S.	2.9	6

#	Article	IF	CITATIONS
217	Understanding the brain through large, multidisciplinary research initiatives. Lancet Neurology, The, 2017, 16, 183-184.	10.2	6
218	Special issue – Hearing, aging and cognitive disorders Resting state network changes in aging and cognitive decline. Hearing, Balance and Communication, 2015, 13, 58-64.	0.4	5
219	Changes of Metabolic Connectivity in Dementia with Lewy Bodies with Visual Hallucinations: A ¹⁸ F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Study. Brain Connectivity, 2021, 11, 518-528.	1.7	5
220	Temporal exponential random graph models of longitudinal brain networks after stroke. Journal of the Royal Society Interface, 2022, 19, 20210850.	3.4	5
221	Magnetic Resonance Imaging Correlates of Immune Microenvironment in Glioblastoma. Frontiers in Oncology, 2022, 12, 823812.	2.8	5
222	Assessment of structural disconnections in gliomas: comparison of indirect and direct approaches. Brain Structure and Function, 2022, 227, 3109-3120.	2.3	5
223	Functional brain imaging and neurological recovery. , 0, , 162-181.		4
224	Rule Perseveration during Task-Switching in Brain Tumor: A Severe Form of Task-Setting Impairment. Journal of Cognitive Neuroscience, 2021, 33, 1766-1783.	2.3	2
225	Brain mapping of attention and neglect after stroke. , 0, , 133-144.		1
226	Reply: Defining a functional network homeostasis after stroke: EEG-based approach is complementary to functional MRI. Brain, 2017, 140, e72-e72.	7.6	1
227	Posterior reversible encephalopathy syndrome associated with Guillainâ€Barré syndrome: Case report and clinical management considerations. Journal of Clinical Apheresis, 2020, 35, 231-233.	1.3	1
228	Laboratory of attention and brain recovery at Washington University, St. Louis. Cognitive Processing, 2006, 7, 209-211.	1.4	0
229	Posterior parietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. Nature Precedings, 2008, , .	0.1	0
230	A Case-Control Study of the Effectiveness of Tissue Plasminogen Activator on 6 Month Patients—Reported Outcomes and Health Care Utilization. Journal of Stroke and Cerebrovascular Diseases, 2014, 23, 2914-2919.	1.6	0
231	Post-Stroke Reorganization of Transient Brain Activity Characterizes Deficits and Recovery of Cognitive Functions. SSRN Electronic Journal, 0, , .	0.4	0
232	Spatiotemporal structure of the spontaneous activity of the brain: modeling and comparison to experimental data. IEICE Proceeding Series, 2014, 1, 566-569.	0.0	0
233	Diffusion-based microstructure models in brain tumours: Fitting in presence of a model-microstructure mismatch. NeuroImage: Clinical, 2022, 34, 102968.	2.7	0
234	Impaired cognitive control in patients with brain tumors. Neuropsychologia, 2022, 169, 108187.	1.6	0