Clotilde Théry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1578443/publications.pdf

Version: 2024-02-01

105 papers

62,590 citations

68 h-index 30894 102 g-index

114 all docs

114 docs citations

114 times ranked 46474 citing authors

#	Article	IF	CITATIONS
1	MPAPASS software enables stitched multiplex, multidimensional EV repertoire analysis and a standard framework for reporting bead-based assays. Cell Reports Methods, 2022, 2, 100136.	1.4	8
2	Cigarette smoke-induced extracellular vesicles from dendritic cells alter T-cell activation and HIV replication. Toxicology Letters, 2022, 360, 33-43.	0.4	7
3	Extracellular vesicles from triple negative breast cancer promote pro-inflammatory macrophages associated with better clinical outcome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2107394119.	3.3	39
4	Urinary extracellular vesicles contain mature transcriptome enriched in circular and long noncoding RNAs with functional significance in prostate cancer. Journal of Extracellular Vesicles, 2022, 11, e12210.	5 . 5	14
5	Homosalate boosts the release of tumourâ€derived extracellular vesicles with protection against anchorageâ€loss property. Journal of Extracellular Vesicles, 2022, 11, .	5.5	6
6	Circulating extracellular vesicles provide valuable protein, but not DNA, biomarkers in metastatic breast cancer. , 2022, 1 , .		0
7	Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nature Communications, 2021, 12, 1864.	5 . 8	126
8	Unbiased proteomic profiling of host cell extracellular vesicle composition and dynamics upon HIVâ€1 infection. EMBO Journal, 2021, 40, e105492.	3 . 5	36
9	Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nature Communications, 2021, 12, 4389.	5 . 8	342
10	The power of imaging to understand extracellular vesicle biology in vivo. Nature Methods, 2021, 18, 1013-1026.	9.0	163
11	A brief history of nearly EVâ€erything – The rise and rise of extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12144.	5.5	150
12	Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12182.	5 . 5	147
13	Extracellular vesicles: eat glutamine and spit acidic bubbles. EMBO Journal, 2020, 39, e105119.	3 . 5	3
14	Methods for Separation and Characterization of Extracellular Vesicles: Results of a Worldwide Survey Performed by the ISEV Rigor and Standardization Subcommittee. Cells, 2020, 9, 1955.	1.8	205
15	Rigor and standardization of extracellular vesicle research: Paving the road towards robustness. Journal of Extracellular Vesicles, 2020, 10, e12037.	5 . 5	37
16	International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy, 2020, 22, 482-485.	0.3	94
17	SnapShot: Extracellular Vesicles. Cell, 2020, 182, 262-262.e1.	13.5	158
18	Extracellular vesicles containing ACE2 efficiently prevent infection by SARSâ€CoVâ€2 Spike proteinâ€containing virus. Journal of Extracellular Vesicles, 2020, 10, e12050.	5 . 5	106

#	Article	IF	CITATIONS
19	Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. Journal of Extracellular Vesicles, 2019, 8, 1648167.	5.5	377
20	Acetylcholinesterase is not a generic marker of extracellular vesicles. Journal of Extracellular Vesicles, 2019, 8, 1628592.	5.5	44
21	Journal of extracellular vesicles: the seven year itch!. Journal of Extracellular Vesicles, 2019, 8, 1654729.	5.5	15
22	Extracellular vesicles and chronic inflammation during HIV infection. Journal of Extracellular Vesicles, 2019, 8, 1687275.	5 . 5	44
23	Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology, 2019, 21, 9-17.	4.6	2,408
24	Why the need and how to approach the functional diversity of extracellular vesicles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160479.	1.8	261
25	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
26	European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD). European Journal of Pharmaceutical Sciences, 2017, 98, 1-3.	1.9	10
27	Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper. Journal of Extracellular Vesicles, 2017, 6, 1286095.	5.5	561
28	EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods, 2017, 14, 228-232.	9.0	886
29	Qualitative differences in Tâ€cell activation by dendritic cellâ€derived extracellular vesicle subtypes. EMBO Journal, 2017, 36, 3012-3028.	3.5	260
30	A novel community driven software for functional enrichment analysis of extracellular vesicles data. Journal of Extracellular Vesicles, 2017, 6, 1321455.	5 . 5	314
31	Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. Journal of Extracellular Vesicles, 2017, 6, 1396823.	5.5	185
32	Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. Journal of Extracellular Vesicles, 2016, 5, 32945.	5 . 5	703
33	The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles. Journal of Extracellular Vesicles, 2016, 5, 34299.	5.5	19
34	B39â€Modelling and biological evidence for alteration of extracellular vesicles in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A23.1-A23.	0.9	0
35	Extending gene ontology in the context of extracellular RNA and vesicle communication. Journal of Biomedical Semantics, 2016, 7, 19.	0.9	24
36	Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E968-77.	3.3	2,548

#	Article	IF	CITATIONS
37	Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell, 2016, 164, 1226-1232.	13.5	2,534
38	Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncolmmunology, 2016, 5, e1071008.	2.1	545
39	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	5.5	1,020
40	Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science, 2015, 349, 1232-1236.	6.0	235
41	Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology, 2014, 30, 255-289.	4.0	4,576
42	Biogenesis and secretion of exosomes. Current Opinion in Cell Biology, 2014, 29, 116-125.	2.6	1,389
43	Different immunogenicity but similar antitumor efficacy of two DNA vaccines coding for an antigen secreted in different membrane vesicleâ€associated forms. Journal of Extracellular Vesicles, 2014, 3, .	5.5	36
44	Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2014, 3, 26913.	5.5	2,110
45	Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. Journal of Cell Science, 2013, 126, 5553-65.	1.2	1,035
46	CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network. Neoplasia, 2013, 15, 85-IN26.	2.3	84
47	MFGE8 does not orchestrate clearance of apoptotic neurons in a mouse model of Parkinson's disease. Neurobiology of Disease, 2013, 51, 192-201.	2.1	9
48	Exosomes and communication between tumours and the immune system: are all exosomes equal?. Biochemical Society Transactions, 2013, 41, 263-267.	1.6	109
49	An essential role for decorin in bladder cancer invasiveness. EMBO Molecular Medicine, 2013, 5, 1835-1851.	3.3	45
50	Unraveling the physiological functions of exosome secretion by tumors. Oncolmmunology, 2013, 2, e22565.	2.1	38
51	Phagocytosis executes delayed neuronal death after focal brain ischemia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4098-107.	3.3	288
52	Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles, 2013, 2, .	5 . 5	1,837
53	New Blocking Antibodies Impede Adhesion, Migration and Survival of Ovarian Cancer Cells, Highlighting MFGE8 as a Potential Therapeutic Target of Human Ovarian Carcinoma. PLoS ONE, 2013, 8, e72708.	1.1	44
54	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	2.6	1,064

#	Article	IF	CITATIONS
55	Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. Journal of Extracellular Vesicles, 2012, 1, .	5.5	466
56	The launch of <i>Journal of Extracellular Vesicles</i> (JEV), the official journal of the International Society for Extracellular Vesicles – about microvesicles, exosomes, ectosomes and other extracellular vesicles. Journal of Extracellular Vesicles, 2012, 1, .	5 . 5	16
57	Rab27a Supports Exosome-Dependent and -Independent Mechanisms That Modify the Tumor Microenvironment and Can Promote Tumor Progression. Cancer Research, 2012, 72, 4920-4930.	0.4	527
58	MFG-E8 Mediates Primary Phagocytosis of Viable Neurons during Neuroinflammation. Journal of Neuroscience, 2012, 32, 2657-2666.	1.7	189
59	MFGE8 Does Not Influence Chorio-Retinal Homeostasis or Choroidal Neovascularization in vivo. PLoS ONE, 2012, 7, e33244.	1.1	2
60	ISEV RNA Workshopâ€"New York City, October 1â€"2, 2012. Journal of Extracellular Vesicles, 2012, 1, 19857.	5.5	4
61	Updated Technology to Produce Highly Immunogenic Dendritic Cell-derived Exosomes of Clinical Grade. Journal of Immunotherapy, 2011, 34, 65-75.	1.2	160
62	Exosomes: secreted vesicles and intercellular communications. F1000 Biology Reports, 2011, 3, 15.	4.0	767
63	Exosome Secretion: Molecular Mechanisms and Roles in Immune Responses. Traffic, 2011, 12, 1659-1668.	1.3	910
64	Milk fat globuleâ€"epidermal growth factorâ€"factor VIII (MFGE8)/lactadherin promotes bladder tumor development. Oncogene, 2011, 30, 642-653.	2.6	49
65	Exosomes: immune properties and potential clinical implementations. Seminars in Immunopathology, 2011, 33, 419-440.	2.8	450
66	Antigen Localization Controls T Cell-Mediated Tumor Immunity. Journal of Immunology, 2011, 187, 1281-1288.	0.4	39
67	Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology, 2010, 12, 19-30.	4.6	1,992
68	Dendritic Cell-Derived Exosomes for Cancer Immunotherapy: What's Next?. Cancer Research, 2010, 70, 1281-1285.	0.4	278
69	Exosomes: Naturally Occurring Minimal Antigen-Presenting Units. , 2010, , 305-319.		2
70	No Significant CTL Cross-Priming by Dendritic Cell-Derived Exosomes during Murine Lymphocytic Choriomeningitis Virus Infection. Journal of Immunology, 2009, 182, 2213-2220.	0.4	23
71	Membrane vesicles as conveyors of immune responses. Nature Reviews Immunology, 2009, 9, 581-593.	10.6	3,386
72	Abstract B175: Lactadherin/MFGE8 favors bladder tumor progression by promoting tolerogenic immune responses. , 2009, , .		0

#	Article	IF	CITATIONS
73	Targeting Tumor Antigens to Secreted Membrane Vesicles (i>In vivo (i>Induces Efficient Antitumor Immune Responses. Cancer Research, 2008, 68, 1228-1235.	0.4	252
74	Maternal Environment Interacts with Modifier Genes to Influence Progression of Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2008, 19, 1491-1499.	3.0	23
75	Exosomes from Bronchoalveolar Fluid of Tolerized Mice Prevent Allergic Reaction. Journal of Immunology, 2008, 181, 1519-1525.	0.4	151
76	General Strategy for Decoration of Enveloped Viruses with Functionally Active Lipid-Modified Cytokines. Journal of Virology, 2007, 81, 8666-8676.	1.5	35
77	CD8+ Dendritic Cells Use LFA-1 to Capture MHC-Peptide Complexes from Exosomes In Vivo. Journal of Immunology, 2007, 179, 1489-1496.	0.4	232
78	Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Current Protocols in Cell Biology, 2006, 30, Unit 3.22.	2.3	4,140
79	Prospects for exosomes in immunotherapy of cancer. Journal of Cellular and Molecular Medicine, 2006, 10, 376-388.	1.6	167
80	Dendritic cell derived-exosomes: biology and clinical implementations. Journal of Leukocyte Biology, 2006, 80, 471-478.	1.5	117
81	Lactadherin promotes VEGF-dependent neovascularization. Nature Medicine, 2005, 11, 499-506.	15.2	274
82	ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood, 2005, 106, 216-223.	0.6	501
83	Accumulation of MFG-E8/lactadherin on exosomes from immature dendritic cells. Blood Cells, Molecules, and Diseases, 2005, 35, 81-88.	0.6	111
84	Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells, Molecules, and Diseases, 2005, 35, 89-93.	0.6	249
85	TSAP6 Facilitates the Secretion of Translationally Controlled Tumor Protein/Histamine-releasing Factor via a Nonclassical Pathway. Journal of Biological Chemistry, 2004, 279, 46104-46112.	1.6	190
86	Indirect activation of naìve CD4+ T cells by dendritic cell–derived exosomes. Nature Immunology, 2002, 3, 1156-1162.	7.0	823
87	Exosomes: composition, biogenesis and function. Nature Reviews Immunology, 2002, 2, 569-579.	10.6	4,401
88	ANTIGENPRESENTATION ANDT CELLSTIMULATION BYDENDRITICCELLS. Annual Review of Immunology, 2002, 20, 621-667.	9.5	1,577
89	Proteomic Analysis of Dendritic Cell-Derived Exosomes: A Secreted Subcellular Compartment Distinct from Apoptotic Vesicles. Journal of Immunology, 2001, 166, 7309-7318.	0.4	1,360
90	Dendritic cell-derived exosomes. , 2001, , 179-185.		4

#	Article	IF	CITATIONS
91	The cell biology of antigen presentation in dendritic cells. Current Opinion in Immunology, 2001, 13, 45-51.	2.4	331
92	Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Medicine, 2001, 7, 297-303.	15.2	1,362
93	Molecular Characterization of Dendritic Cell-Derived Exosomes. Journal of Cell Biology, 1999, 147, 599-610.	2.3	950
94	Fcγ Receptor–mediated Induction of Dendritic Cell Maturation and Major Histocompatibility Complex Class I–restricted Antigen Presentation after Immune Complex Internalization. Journal of Experimental Medicine, 1999, 189, 371-380.	4.2	838
95	A role for HLA-DO as a co-chaperone of HLA-DM in peptide loading of MHC class II molecules. EMBO Journal, 1998, 17, 2971-2981.	3.5	109
96	Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5229-5234.	3.3	233
97	Downregulation of in vitro neurotoxicity of brain macrophages by prostaglandin E2 and a \hat{l}^2 -adrenergic agonist. Glia, 1994, 11, 383-386.	2.5	71
98	Of mice and frogs. Trends in Genetics, 1994, 10, 181-183.	2.9	14
99	Influence of interleukin-1 and tumor necrosis factor alpha on the growth of microglial cells in primary cultures of mouse cerebral cortex: involvement of colony-stimulating factor 1. Neuroscience Letters, 1993, 150, 195-199.	1.0	39
100	Interleukin 1 and Tumor Necrosis Factor-? Stimulate the Production of Colony-Stimulating Factor 1 by Murine Astrocytes. Journal of Neurochemistry, 1992, 59, 1183-1186.	2.1	62
101	Cytotoxic Effect of Brain Macrophages on Developing Neurons. European Journal of Neuroscience, 1991, 3, 1155-1164.	1.2	173
102	Expression of macrophage colony-stimulating factor gene in the mouse brain during development. Journal of Neuroscience Research, 1990, 26, 129-133.	1.3	89
103	Evidence for a novel growth factor in xenopus oocytes. Biochemical and Biophysical Research Communications, 1989, 160, 615-622.	1.0	4
104	Exosomes: composition, biogenesis and function. , 0, .		1
105	Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. , 0, .		1