
Mark E Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1578181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ordered porous materials for emerging applications. Nature, 2002, 417, 813-821.	13.7	4,882
2	Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery, 2008, 7, 771-782.	21.5	3,710
3	Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464, 1067-1070.	13.7	2,292
4	Cyclodextrin-based pharmaceutics: past, present and future. Nature Reviews Drug Discovery, 2004, 3, 1023-1035.	21.5	1,636
5	Zeolite and molecular sieve synthesis. Chemistry of Materials, 1992, 4, 756-768.	3.2	1,362
6	The First Targeted Delivery of siRNA in Humans via a Self-Assembling, Cyclodextrin Polymer-Based Nanoparticle: From Concept to Clinic. Molecular Pharmaceutics, 2009, 6, 659-668.	2.3	884
7	Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6164-6168.	3.3	861
8	Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality <i>in vivo</i> imaging. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15549-15554.	3.3	760
9	Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Research, 2006, 34, 322-333.	6.5	752
10	A molecular sieve with eighteen-membered rings. Nature, 1988, 331, 698-699.	13.7	689
11	PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. European Journal of Cell Biology, 2004, 83, 97-111.	1.6	646
12	Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1235-1240.	3.3	614
13	Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water. Angewandte Chemie - International Edition, 2010, 49, 8954-8957.	7.2	612
14	"One-Pot―Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite. ACS Catalysis, 2011, 1, 408-410.	5.5	607
15	Sequence-Specific Knockdown of EWS-FLI1 by Targeted, Nonviral Delivery of Small Interfering RNA Inhibits Tumor Growth in a Murine Model of Metastatic Ewing's Sarcoma. Cancer Research, 2005, 65, 8984-8992.	0.4	560
16	Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 2018, 118, 5265-5329.	23.0	534
17	Molecular imprinting of bulk, microporous silica. Nature, 2000, 403, 286-289.	13.7	500
18	Synthesis of Pure Alumina Mesoporous Materials. Chemistry of Materials, 1996, 8, 1451-1464.	3.2	412

#	Article	IF	CITATIONS
19	Organic-functionalized molecular sieves as shape-selective catalysts. Nature, 1998, 393, 52-54.	13.7	412
20	New vistas in zeolite and molecular sieve catalysis. Accounts of Chemical Research, 1993, 26, 111-115.	7.6	408
21	Cooperative catalysis by silica-supported organic functional groups. Chemical Society Reviews, 2008, 37, 1118.	18.7	406
22	Non-viral gene delivery systems. Current Opinion in Biotechnology, 2002, 13, 128-131.	3.3	405
23	Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8662-8667.	3.3	391
24	Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5715-5721.	3.3	384
25	Mechanism of Structure Direction in the Synthesis of Si-ZSM-5: An Investigation by Intermolecular 1H-29Si CP MAS NMR. The Journal of Physical Chemistry, 1994, 98, 4647-4653.	2.9	368
26	Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9727-9732.	3.3	354
27	Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media. ACS Catalysis, 2011, 1, 1566-1580.	5.5	349
28	Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nature Reviews Drug Discovery, 2015, 14, 843-856.	21.5	349
29	Hydroformylation by supported aqueous-phase catalysis: a new class of heterogeneous catalysts. Nature, 1989, 339, 454-455.	13.7	342
30	Nanotechnology and Cancer. Annual Review of Medicine, 2008, 59, 251-265.	5.0	337
31	Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11449-11454.	3.3	325
32	Mechanisms of Structure Direction in the Synthesis of Pure-Silica Zeolites. 1. Synthesis of TPA/Si-ZSM-5. Chemistry of Materials, 1995, 7, 920-928.	3.2	308
33	Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3137-3142.	3.3	299
34	Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Research, 2005, 33, 4140-4156.	6.5	294
35	Framework and Extraframework Tin Sites in Zeolite Beta React Glucose Differently. ACS Catalysis, 2012, 2, 2705-2713.	5.5	274
36	Physicochemical and Biological Characterization of Targeted, Nucleic Acid-Containing Nanoparticles. Bioconjugate Chemistry, 2007, 18, 456-468.	1.8	270

#	Article	IF	CITATIONS
37	Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose. ACS Catalysis, 2014, 4, 2288-2297.	5.5	254
38	Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8363-8367.	3.3	248
39	Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 2014, 26, 239-245.	3.2	242
40	Base catalysis by alkali-modified zeolites I. Catalytic activity. Journal of Catalysis, 1989, 116, 263-278.	3.1	237
41	Design and synthesis of a heterogeneous asymmetric catalyst. Nature, 1994, 370, 449-450.	13.7	236
42	SiOcntdotcntdotcntdot.HOSi Hydrogen Bonds in As-Synthesized High-Silica Zeolites. The Journal of Physical Chemistry, 1995, 99, 12588-12596.	2.9	233
43	Rational Catalyst Design via Imprinted Nanostructured Materials. Chemistry of Materials, 1996, 8, 1820-1839.	3.2	226
44	Zeolites and molecular sieves: not just ordinary catalysts. Industrial & Engineering Chemistry Research, 1991, 30, 1675-1683.	1.8	223
45	Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12486-12491.	3.3	215
46	Preclinical Efficacy of the Camptothecin-Polymer Conjugate IT-101 in Multiple Cancer Models. Clinical Cancer Research, 2006, 12, 1606-1614.	3.2	213
47	Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 2000, 122, 263-273.	6.6	211
48	Thermochemistry of Pure-Silica Zeolites. Journal of Physical Chemistry B, 2000, 104, 10001-10011.	1.2	200
49	Mechanism of Structure Direction in the Synthesis of Pure-Silica Zeolites. 2. Hydrophobic Hydration and Structural Specificity. Chemistry of Materials, 1995, 7, 1453-1463.	3.2	193
50	Imaging the Assembly Process of the Organic-Mediated Synthesis of a Zeolite. Chemistry - A European Journal, 1999, 5, 2083-2088.	1.7	173
51	Investigations into the nature of a silicoaluminophosphate with the faujasite structure. Journal of the American Chemical Society, 1987, 109, 2686-2691.	6.6	171
52	Properties of organic cations that lead to the structure-direction of high-silica molecular sieves. Microporous Materials, 1996, 6, 213-229.	1.6	170
53	Characterization of the Extra-Large-Pore Zeolite UTD-1. Journal of the American Chemical Society, 1997, 119, 8474-8484.	6.6	168
54	Impact of tumorâ€specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNAâ€containing nanoparticles. Biotechnology and Bioengineering, 2008, 99, 975-985.	1.7	168

#	Article	IF	CITATIONS
55	VPI-5: The first molecular sieve with pores larger than 10 Ãngstroms. Zeolites, 1988, 8, 362-366.	0.9	167
56	Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Advanced Drug Delivery Reviews, 2009, 61, 1189-1192.	6.6	165
57	Clinical Developments in Nanotechnology for Cancer Therapy. Pharmaceutical Research, 2011, 28, 187-199.	1.7	161
58	Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11394-11399.	3.3	160
59	Potent siRNA Inhibitors of Ribonucleotide Reductase Subunit RRM2 Reduce Cell Proliferation In vitro and In vivo. Clinical Cancer Research, 2007, 13, 2207-2215.	3.2	155
60	Monosaccharide and disaccharide isomerization over Lewis acid sites in hydrophobic and hydrophilic molecular sieves. Journal of Catalysis, 2013, 308, 176-188.	3.1	150
61	The Quest For Extraâ€Large Pore, Crystalline Molecular Sieves. Chemistry - A European Journal, 1997, 3, 1745-1750.	1.7	148
62	CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3850-3854.	3.3	144
63	Pharmacokinetics and biodistribution of the camptothecin–polymer conjugate IT-101 in rats and tumor-bearing mice. Cancer Chemotherapy and Pharmacology, 2006, 57, 654-662.	1.1	139
64	Selfâ€Pillared, Singleâ€Unitâ€Cell Snâ€MFI Zeolite Nanosheets and Their Use for Glucose and Lactose Isomerization. Angewandte Chemie - International Edition, 2015, 54, 10848-10851.	7.2	138
65	CIT-1: A New Molecular Sieve with Intersecting Pores Bounded by 10- and 12-Rings. Journal of the American Chemical Society, 1995, 117, 3766-3779.	6.6	136
66	CIT-5: a high-silica zeolite with 14-ring pores. Chemical Communications, 1997, , 2179-2180.	2.2	134
67	Organizing for better synthesis. Nature, 1993, 364, 391-392.	13.7	129
68	Effect of Cage Size on the Selective Conversion of Methanol to Light Olefins. ACS Catalysis, 2012, 2, 2490-2495.	5.5	128
69	Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. Biotechnology and Bioengineering, 2007, 97, 909-921.	1.7	123
70	Beyond shape selective catalysis with zeolites: Hydrophobic void spaces in zeolites enable catalysis in liquid water. AICHE Journal, 2013, 59, 3349-3358.	1.8	120
71	Effect of Heteroatom Concentration in SSZ-13 on the Methanol-to-Olefins Reaction. ACS Catalysis, 2016, 6, 542-550.	5.5	117
72	Impact of Controlling the Site Distribution of Al Atoms on Catalytic Properties in Ferrierite-Type Zeolites. Journal of Physical Chemistry C, 2011, 115, 1096-1102.	1.5	114

#	Article	IF	CITATIONS
73	Investigations into the Mechanisms of Molecular Recognition with Imprinted Polymers. Macromolecules, 1999, 32, 4113-4121.	2.2	112
74	Synthesis, Characterization, and Structure Solution of CIT-5, a New, High-Silica, Extra-Large-Pore Molecular Sieve. Journal of Physical Chemistry B, 1998, 102, 7139-7147.	1.2	109
75	Enantiomerically enriched, polycrystalline molecular sieves. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5101-5106.	3.3	109
76	Base catalysis by alkali-modified zeolites II. Nature of the active site. Journal of Catalysis, 1989, 116, 279-284.	3.1	107
77	ZrO2 promoted with sulfate, iron and manganese: a solid superacid catalyst capable of low temperaturen-butane isomerization. Catalysis Letters, 1994, 25, 21-28.	1.4	102
78	Synthesis of a Specified, Silica Molecular Sieve by Using Computationally Predicted Organic Structureâ€Directing Agents. Angewandte Chemie - International Edition, 2014, 53, 8372-8374.	7.2	100
79	Tandem catalysis for the production of alkyl lactates from ketohexoses at moderate temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11777-11782.	3.3	94
80	Route to Renewable PET: Reaction Pathways and Energetics of Diels–Alder and Dehydrative Aromatization Reactions Between Ethylene and Biomass-Derived Furans Catalyzed by Lewis Acid Molecular Sieves. ACS Catalysis, 2015, 5, 5904-5913.	5.5	92
81	Methanol-to-Olefins Catalysis with Hydrothermally Treated Zeolite SSZ-39. ACS Catalysis, 2015, 5, 6078-6085.	5.5	92
82	Characterization and catalytic activity of titanium containing SSZ-33 and aluminum-free zeolite beta. Applied Catalysis A: General, 1996, 143, 53-73.	2.2	90
83	Organic-functionalized molecular sieves (OFMSs):. Microporous and Mesoporous Materials, 1999, 33, 223-240.	2.2	90
84	Challenges of and Insights into Acid-Catalyzed Transformations of Sugars. Journal of Physical Chemistry C, 2014, 118, 22815-22833.	1.5	88
85	Structure-directing effects in the crown ether-mediated syntheses of FAU and EMT zeolites. Microporous Materials, 1993, 1, 265-282.	1.6	87
86	Organic-Free Synthesis of CHA-Type Zeolite Catalysts for the Methanol-to-Olefins Reaction. ACS Catalysis, 2015, 5, 4456-4465.	5.5	87
87	Thermodynamics of Pure-Silica Molecular Sieve Synthesis. Journal of Physical Chemistry B, 2002, 106, 3629-3638.	1.2	86
88	Cage-Defining Ring: A Molecular Sieve Structural Indicator for Light Olefin Product Distribution from the Methanol-to-Olefins Reaction. ACS Catalysis, 2019, 9, 6012-6019.	5.5	84
89	Location of Pyridine Guest Molecules in an Electroneutral {3â^ž}[SiO4/2] Host Framework: Single-Crystal Structures of the As-Synthesized and Calcined Forms of High-Silica Ferrierite. The Journal of Physical Chemistry, 1996, 100, 5039-5049.	2.9	79
90	Reflections on Routes to Enantioselective Solid Catalysts. Topics in Catalysis, 2003, 25, 3-7.	1.3	79

#	Article	IF	CITATIONS
91	Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth. Journal of Controlled Release, 2012, 159, 384-392.	4.8	78
92	Facile Synthesis and Catalysis of Pure-Silica and Heteroatom LTA. Chemistry of Materials, 2015, 27, 7774-7779.	3.2	75
93	SSZ-35 and SSZ-44: Two Related Zeolites Containing Pores Circumscribed by Ten- and Eighteen-Membered Rings. Angewandte Chemie - International Edition, 1999, 38, 1269-1272.	7.2	74
94	A Nanoparticle-Based Model Delivery System To Guide the Rational Design of Gene Delivery to the Liver. 2. In Vitro and In Vivo Uptake Results. Bioconjugate Chemistry, 2005, 16, 1071-1080.	1.8	73
95	A Chromium Hydroxide/MILâ€101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie - International Edition, 2018, 57, 4926-4930.	7.2	73
96	Imidazolium structure directing agents in zeolite synthesis: Exploring guest/host relationships in the synthesis of SSZ-70. Microporous and Mesoporous Materials, 2010, 130, 255-265.	2.2	71
97	Proton Conductivity of Acid-Functionalized Zeolite Beta, MCM-41, and MCM-48: Effect of Acid Strength. Chemistry of Materials, 2008, 20, 5122-5124.	3.2	67
98	Low-temperature, manganese oxide-based, thermochemical water splitting cycle. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9260-9264.	3.3	62
99	Synthesis and characterization of pure-silica and boron-substituted SSZ-24 using N(16) methylsparteinium bromide as structure-directing agent. Microporous Materials, 1994, 3, 61-69.	1.6	61
100	Catalysis by framework zinc in silica-based molecular sieves. Chemical Science, 2016, 7, 2264-2274.	3.7	61
101	Titanium-Beta Zeolites Catalyze the Stereospecific Isomerization of <scp>d</scp> -Glucose to <scp>l</scp> -Sorbose via Intramolecular C5–C1 Hydride Shift. ACS Catalysis, 2013, 3, 1469-1476.	5.5	60
102	Pharmacodynamic and pharmacogenomic study of the nanoparticle conjugate of camptothecin CRLX101 for the treatment of cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1477-1486.	1.7	58
103	Heterogeneous Catalysis for the Conversion of Sugars into Polymers. Topics in Catalysis, 2015, 58, 405-409.	1.3	58
104	Influence of Organic Structure Directing Agent Isomer Distribution on the Synthesis of SSZ-39. Chemistry of Materials, 2015, 27, 2695-2702.	3.2	57
105	SSZ-33:Â A Promising Material for Use as a Hydrocarbon Trap. Journal of Physical Chemistry B, 2004, 108, 13059-13061.	1.2	56
106	Synthesis and Characterization of CIT-13, a Germanosilicate Molecular Sieve with Extra-Large Pore Openings. Chemistry of Materials, 2016, 28, 6250-6259.	3.2	56
107	Single-Antibody, Targeted Nanoparticle Delivery of Camptothecin. Molecular Pharmaceutics, 2013, 10, 2558-2567.	2.3	55
108	Structural and kinetic changes to small-pore Cu-zeolites after hydrothermal aging treatments and selective catalytic reduction of NO _x with ammonia. Reaction Chemistry and Engineering, 2017, 2, 168-179.	1.9	54

#	Article	IF	CITATIONS
109	Synthesis of CIT-6, a zincosilicate with the *BEA topology. Topics in Catalysis, 1999, 9, 35-42.	1.3	51
110	Synthesis of Hydrophobic Molecular Sieves by Hydrothermal Treatment with Acetic Acid. Chemistry of Materials, 2001, 13, 1041-1050.	3.2	50
111	Preclinical Results of Camptothecin-Polymer Conjugate (IT-101) in Multiple Human Lymphoma Xenograft Models. Clinical Cancer Research, 2009, 15, 4365-4373.	3.2	50
112	VPI-8: A High-Silica Molecular Sieve with a Novel "Pinwheel―Building Unit and Its Implications for the Synthesis of Extra-Large Pore Molecular Sieves. Journal of the American Chemical Society, 1996, 118, 7299-7310.	6.6	48
113	A New Catalyst for the Selective Oxidation of Butane and Propane This work was funded by BP Angewandte Chemie - International Edition, 2002, 41, 858.	7.2	48
114	Physicochemical Properties and Catalytic Behavior of the Molecular Sieve SSZ-70. Chemistry of Materials, 2010, 22, 2563-2572.	3.2	47
115	Synthesis of RTH-Type Zeolites Using a Diverse Library of Imidazolium Cations. Chemistry of Materials, 2015, 27, 3756-3762.	3.2	47
116	Organocations in Zeolite Synthesis:Â Fused Bicyclo [l.m.0] Cations and the Discovery of Zeolite SSZ-48. Journal of the American Chemical Society, 2002, 124, 7024-7034.	6.6	46
117	Carbonylation of Dimethyl Ether to Methyl Acetate over SSZ-13. ACS Catalysis, 2020, 10, 842-851.	5.5	46
118	VPI-5, AlPO4-8, and MCM-9: similarities and differences. Zeolites, 1989, 9, 436-439.	0.9	45
119	Raman and 29Si MAS NMR spectroscopy of framework materials containing three-membered rings. Microporous Materials, 1993, 1, 57-65.	1.6	45
120	Intrazeolite rhodium carbonyl and rhodium carbonyl phosphine complexes. Inorganic Chemistry, 1984, 23, 52-56.	1.9	43
121	Nanoparticle therapeutics: an emerging treatment modality for cancer. , 2009, , 239-250.		43
122	Nickel-Exchanged Zincosilicate Catalysts for the Oligomerization of Propylene. ACS Catalysis, 2014, 4, 4189-4195.	5.5	42
123	High resolution, quasi-equilibrium sorption studies of molecular sieves. Catalysis Letters, 1990, 5, 333-347.	1.4	41
124	Solid State NMR Characterization of Sn-Beta Zeolites that Catalyze Glucose Isomerization and Epimerization. Topics in Catalysis, 2015, 58, 435-440.	1.3	40
125	CIT-7, a crystalline, molecular sieve with pores bounded by 8 and 10-membered rings. Chemical Science, 2015, 6, 1728-1734.	3.7	40
126	Pillared Snâ€MWW Prepared by a Solidâ€Stateâ€Exchange Method and its Use as a Lewis Acid Catalyst. ChemCatChem, 2016, 8, 1274-1278.	1.8	40

#	Article	IF	CITATIONS
127	Further Studies on How the Nature of Zeolite Cavities That Are Bounded by Small Pores Influences the Conversion of Methanol to Light Olefins. ChemPhysChem, 2018, 19, 412-419.	1.0	40
128	Pure-silica LTA, CHA, STT, ITW, and -SVR thin films and powders for low-k applications. Microporous and Mesoporous Materials, 2010, 130, 49-55.	2.2	38
129	Synthesis and Structure of Ultrafine Zeolite KL (LTL) Crystallites and their Use for Thin Film Zeolite Processing. Materials Research Society Symposia Proceedings, 1994, 371, 21.	0.1	37
130	Store–Operated Ca2+ Channels in Mesangial Cells Inhibit Matrix Protein Expression. Journal of the American Society of Nephrology: JASN, 2015, 26, 2691-2702.	3.0	36
131	Analysis of a diffusion-limited hollow fiber reactor for the measurement of effective substrate diffusivities. Biotechnology and Bioengineering, 1985, 27, 182-186.	1.7	35
132	Steam-dealuminated, OSDA-free RHO and KFI-type zeolites as catalysts for the methanol-to-olefins reaction. Microporous and Mesoporous Materials, 2016, 232, 126-137.	2.2	35
133	Synthesis of the RTH-type layer: the first small-pore, two dimensional layered zeolite precursor. Chemical Science, 2015, 6, 5955-5963.	3.7	34
134	Tin Silsesquioxanes as Models for the "Open―Site in Tin ontaining Zeolite Beta. ChemCatChem, 2016, 8, 121-124.	1.8	34
135	Synthesis of Germanosilicate Molecular Sieves from Mono- and Di-Quaternary Ammonium OSDAs Constructed from Benzyl Imidazolium Derivatives: Stabilization of Large Micropore Volumes Including New Molecular Sieve CIT-13. Chemistry of Materials, 2016, 28, 2158-2164.	3.2	34
136	Analysis of a continuous, aerobic, fixed-film bioreactor. I. Steady-state behavior. Biotechnology and Bioengineering, 1984, 26, 457-467.	1.7	32
137	Method of establishing breast cancer brain metastases affects brain uptake and efficacy of targeted, therapeutic nanoparticles. Bioengineering and Translational Medicine, 2019, 4, 30-37.	3.9	32
138	Effect of Pore and Cage Size on the Formation of Aromatic Intermediates During the Methanol-to-Olefins Reaction. Topics in Catalysis, 2015, 58, 416-423.	1.3	31
139	High-silica, heulandite-type zeolites prepared by direct synthesis and topotactic condensation. Journal of Materials Chemistry A, 2015, 3, 12890-12897.	5.2	30
140	A Chromium Hydroxide/MILâ€101(Cr) MOF Composite Catalyst and Its Use for the Selective Isomerization of Glucose to Fructose. Angewandte Chemie, 2018, 130, 5020-5024.	1.6	30
141	Zinc Containing Smallâ€Pore Zeolites for Capture of Low Concentration Carbon Dioxide. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
142	A Thirty-Year Journey to the Creation of the First Enantiomerically Enriched Molecular Sieve. ACS Catalysis, 2018, 8, 10082-10088.	5.5	29
143	Synthesis of (Alumino) Silicate Materials Using Organic Molecules and Self-Assembled Organic Aggregates as Structure-Directing Agents. Materials Research Society Symposia Proceedings, 1994, 346, 831.	0.1	28
144	Chapter 4 Phosphate-based molecular sieves with pores comprised of greater than 12-rings. Catalysis Today, 1994, 19, 61-106.	2.2	28

#	Article	IF	CITATIONS
145	MATERIALS SCIENCE: Enhanced: Distinguishing the (Almost) Indistinguishable. Science, 2003, 300, 438-439.	6.0	28
146	Analysis of a continuous, aerobic, fixed-film bioreactor. II. Dynamic behavior. Biotechnology and Bioengineering, 1984, 26, 468-476.	1.7	27
147	The synthesis of aluminophosphate and germanosilicate LTA using a triquaternary structure directing agent. Microporous and Mesoporous Materials, 2014, 200, 132-139.	2.2	27
148	Upgrading Light Hydrocarbons: A Tandem Catalytic System for Alkane/Alkene Coupling. Topics in Catalysis, 2015, 58, 494-501.	1.3	27
149	Isobutane alkylation over solid acid catalysts under supercritical conditions. Research on Chemical Intermediates, 1998, 24, 449-459.	1.3	26
150	Fighting cancer with nanoparticle medicines―The nanoscale matters. MRS Bulletin, 2012, 37, 828-835.	1.7	25
151	Facile Synthesis, Characterization, and Catalytic Behavior of a Largeâ€Pore Zeolite with the IWV Framework. Chemistry - A European Journal, 2016, 22, 4022-4029.	1.7	24
152	Targeted Nanoparticles Assembled via Complexation of Boronic-Acid-Containing Targeting Moieties to Diol-Containing Polymers. Bioconjugate Chemistry, 2013, 24, 669-677.	1.8	23
153	Lack of in Vivo Antibody Dependent Cellular Cytotoxicity with Antibody Containing Gold Nanoparticles. Bioconjugate Chemistry, 2015, 26, 812-816.	1.8	23
154	Pilot trial of CRLX101 in patients with advanced, chemotherapy-refractory gastroesophageal cancer. Journal of Gastrointestinal Oncology, 2017, 8, 962-969.	0.6	23
155	Zeolites P1 and L as precursors for the preparation of alkaline-earth zeolites. Microporous Materials, 1997, 12, 347-359.	1.6	22
156	Spinel Metal Oxide-Alkali Carbonate-Based, Low-Temperature Thermochemical Cycles for Water Splitting and CO2 Reduction. Chemistry of Materials, 2013, 25, 1564-1571.	3.2	22
157	Facile Preparation of Aluminosilicate RTH across a Wide Composition Range Using a New Organic Structure-Directing Agent. Chemistry of Materials, 2014, 26, 7099-7105.	3.2	22
158	Synthesis of gmelinite and ZSM-12 zeolites with a polymer template. Journal of the Chemical Society Chemical Communications, 1988, , 920.	2.0	21
159	Transesterification on ?imprinted? silica. Catalysis Letters, 1996, 40, 109-114.	1.4	21
160	Host immune response to anti-cancer camptothecin conjugated cyclodextrin-based polymers. Journal of Biomedical Science, 2019, 26, 85.	2.6	21
161	Grand openings for cloverite. Nature, 1991, 352, 281-282.	13.7	20
162	The Effect of Adsorbed Molecule Gas-Phase Deprotonation Enthalpy on Ion Exchange in Sodium Exchanged Zeolites: An In Situ FTIR Investigation. Topics in Catalysis, 2015, 58, 393-404.	1.3	20

#	Article	IF	CITATIONS
163	CITâ€9: A Faultâ€Free Gmelinite Zeolite. Angewandte Chemie - International Edition, 2017, 56, 13475-13478.	7.2	20
164	Evolution of extra-large pore materials. Studies in Surface Science and Catalysis, 2001, 135, 29-36.	1.5	19
165	129Xe NMR spectroscopy on molecular sieves SAPO-37, AIPO4-5, SAPO-5 and SSZ-24. Catalysis Letters, 1990, 6, 331-339.	1.4	18
166	Design for sieving. Nature, 1996, 382, 583-585.	13.7	18
167	Proton-Conducting Solid Electrolyte via Ozonolysis of Cationic Ammonium Organoalkoxysilane Surfactant-Templated MCM-41. Chemistry of Materials, 2006, 18, 5634-5636.	3.2	17
168	Store-operated calcium entry suppressed the TGF-β1/Smad3 signaling pathway in glomerular mesangial cells. American Journal of Physiology - Renal Physiology, 2017, 313, F729-F739.	1.3	17
169	Transformation of Extra-Large Pore Germanosilicate CIT-13 Molecular Sieve into Extra-Large Pore CIT-5 Molecular Sieve. Chemistry of Materials, 2019, 31, 9777-9787.	3.2	17
170	CIT-4: The first synthetic analogue of brewsterite. Microporous Materials, 1997, 11, 87-95.	1.6	16
171	Synthesis of rhodium zeolite A. Journal of the Chemical Society Chemical Communications, 1986, , 234.	2.0	15
172	Methyl-ligated tin silsesquioxane catalyzed reactions of glucose. Journal of Catalysis, 2016, 341, 62-71.	3.1	15
173	Negative regulation of Smad1 pathway and collagen IV expression by store-operated Ca ²⁺ entry in glomerular mesangial cells. American Journal of Physiology - Renal Physiology, 2017, 312, F1090-F1100.	1.3	15
174	Inhibition of interleukin-6 on matrix protein production by glomerular mesangial cells and the pathway involved. American Journal of Physiology - Renal Physiology, 2020, 318, F1478-F1488.	1.3	15
175	Integration of thermochemical water splitting with CO ₂ direct air capture. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25001-25007.	3.3	13
176	Methanol-to-olefins catalysis on ERI-type molecular sieves: towards enhancing ethylene selectivity. Journal of Catalysis, 2021, 404, 620-633.	3.1	13
177	Reaction chemistry and reaction engineering principles in catalyst design. Chemical Engineering Science, 1994, 49, 3971-3980.	1.9	12
178	Adsorption studies with gmelinite zeolites containing mono-, di- and tri-valent cations. Microporous and Mesoporous Materials, 2000, 38, 143-149.	2.2	12
179	Hybrid Organicâ^'Inorganic Solids That Show Shape Selectivity. Chemistry of Materials, 2010, 22, 2646-2652.	3.2	12
180	Nanoparticles containing a combination of a drug and an antibody for the treatment of breast cancer brain metastases. Molecular Pharmaceutics, 2020, 17, 717-721.	2.3	12

#	Article	IF	CITATIONS
181	Shape-Selective Catalysis with Zeolites and Molecular Sieves. ACS Symposium Series, 1993, , 206-221.	0.5	11
182	Combinatorial methods: How will they integrate into chemical engineering?. AICHE Journal, 1999, 45, 2270-2272.	1.8	11
183	On the synthesis of SSZ-48, SSZ-43 and their variations. Microporous and Mesoporous Materials, 2002, 52, 19-28.	2.2	11
184	Further Investigations of Racemic and Chiral Molecular Sieves of the STW Topology. Chemistry of Materials, 2021, 33, 1752-1759.	3.2	11
185	Heteropolyacid-based catalysts for selective alkane oxidation: mechanism of formation of maleic anhydride from propane. Catalysis Today, 2003, 81, 189-195.	2.2	10
186	Cationic Mucic Acid Polymer-Based siRNA Delivery Systems. Bioconjugate Chemistry, 2015, 26, 1791-1803.	1.8	10
187	Fluoride-free Synthesis of Cermanosilicate CIT-13 and Its Inverse Sigma Transformation To Form CIT-14. Chemistry of Materials, 2020, 32, 2014-2024.	3.2	10
188	New horizons for the use of porous materials as catalysts. Studies in Surface Science and Catalysis, 1999, 121, 23-32.	1.5	8
189	Hydroformylation of propene with zeolite-supported rhodium phosphine complexes. Journal of the Chemical Society Chemical Communications, 1985, , 1477.	2.0	7
190	CITâ€9: A Faultâ€Free Gmelinite Zeolite. Angewandte Chemie, 2017, 129, 13660-13663.	1.6	6
191	AXIAL DISPERSION IN THE ANNULAR BED REACTOR. Chemical Engineering Communications, 1984, 25, 1-10.	1.5	5
192	Silicoaluminophosphate Molecular Sieves. ACS Symposium Series, 1990, , 38-47.	0.5	5
193	β-Cyclodextrin-containing polymer treatment of cutaneous lupus and influenza improves outcomes. Molecular Therapy, 2022, 30, 845-854.	3.7	5
194	Zinc Containing Smallâ€Pore Zeolites for Capture of Low Concentration Carbon Dioxide. Angewandte Chemie, 2022, 134, .	1.6	5
195	Structure Elucidation and Computationally Guided Synthesis of SSZâ€43: A Oneâ€Dimensional 12â€Ring Zeolite with Unique Sinusoidal Channels. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
196	Crystallization of Aluminophosphate VPI-5 Using Magic Angle Spinning NMR Spectroscopy. ACS Symposium Series, 1990, , 48-65.	0.5	4
197	Zeolite Synthesis: Can It Be Designed?. ACS Symposium Series, 1994, , 27-37.	0.5	4
198	The Effects of Charge Separation in Quaternary Ammonium, DABCO-Containing Polymers on In Vitro Toxicity and Gene Delivery. Materials Research Society Symposia Proceedings, 2002, 724, N10.2.1.	0.1	4

#	Article	IF	CITATIONS
199	Imaging the Assembly Process of the Organic-Mediated Synthesis of a Zeolite. , 1999, 5, 2083.		4
200	Reactions of <i>meta</i> -Diisopropylbenzene on Acid Molecular Sieves. ACS Symposium Series, 1993, , 222-232.	0.5	3
201	Molecular Sieve Coated Saw Device for the Detection of Carbon Dioxide in the Presence of Water. Materials Research Society Symposia Proceedings, 1994, 360, 359.	0.1	3
202	The rise and realization of molecular chemical engineering. AICHE Journal, 2009, 55, 1636-1640.	1.8	3
203	Sulfonic Acid-Functionalized Zeolite Beta: Bronsted Acid Catalysts for Reactions Involving Liquid Water. ACS Sustainable Chemistry and Engineering, 2021, 9, 17120-17127.	3.2	3
204	THE NON-ITERATIVE SOLUTION OF NONLINEAR PARABOLIC AND MIXED-TYPE PROBLEMS ARISING IN REACTOR DESIGN. Chemical Engineering Communications, 1983, 23, 89-99.	1.5	2
205	Towards the Rational Design and Synthesis of Zeolites. Materials Research Society Symposia Proceedings, 1994, 371, 3.	0.1	2
206	VPI-5: A Novel Large Pore Molecular Sieve. Materials Research Society Symposia Proceedings, 1987, 111, 267.	0.1	1
207	Synthesis of Ordered Silicates by the Use of Organic Structure-Directing Agents. Materials Research Society Symposia Proceedings, 1996, 435, 263.	0.1	1
208	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44, 453-457.	1.6	1
209	Reply to Perris, Borghese, and Magro. Pigment Cell and Melanoma Research, 2011, 24, 983-985.	1.5	1
210	The Engineering of Biology and Medicine. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14423-14423.	3.3	1
211	Initiating a researchâ€focused academic career in chemical engineering: Perspectives from faculty at different career stages. AICHE Journal, 2020, 66, e16927.	1.8	1
212	CATALYSIS BY CRYSTALLINE, MICROPOROUS MATERIALS. , 2018, , .		1
213	Fine Chemicals Synthesis by Heterogeneous Asymmetric Catalysis. Materials Research Society Symposia Proceedings, 1994, 368, 165.	0.1	0
214	Catalysis in Water as a Special Unit Operation: Section 4.7. , 2005, , 313-323.		0
215	Preclinical Results of the Camptothecin-Polymer Conjugate IT-101 in Multiple Human Lymphoma Xenografts Blood, 2007, 110, 1376-1376.	0.6	0
216	Structure Elucidation and Computationally Guided Synthesis of SSZâ€43: A Oneâ€Dimensional 12â€Ring Zeolite with Unique Sinusoidal Channels. Angewandte Chemie, 0, , .	1.6	0