
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1577849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Phase 1 Study of the Proteasome Inhibitor Bortezomib in Pediatric Patients with Refractory Leukemia: a Children's Oncology Group Study. Clinical Cancer Research, 2007, 13, 1516-1522.	7.0	142
2	Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemotherapy and Pharmacology, 2006, 58, 13-23.	2.3	118
3	Bortezomib with standard chemotherapy for children with acute myeloid leukemia does not improve treatment outcomes: a report from the Children's Oncology Group. Haematologica, 2020, 105, 1879-1886.	3.5	83
4	Brentuximab vedotin with gemcitabine for paediatric and young adult patients with relapsed or refractory Hodgkin's lymphoma (AHOD1221): a Children's Oncology Group, multicentre single-arm, phase 1–2 trial. Lancet Oncology, The, 2018, 19, 1229-1238.	10.7	67
5	Bortezomib reinduction chemotherapy in highâ€risk <scp>ALL</scp> in first relapse: a report from the Children's Oncology Group. British Journal of Haematology, 2019, 186, 274-285.	2.5	65
6	Children's Oncology Group's 2013 blueprint for research: Hodgkin lymphoma. Pediatric Blood and Cancer, 2013, 60, 972-978.	1.5	56
7	Children's Oncology Group Trial AALL1231: A Phase III Clinical Trial Testing Bortezomib in Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia and Lymphoma. Journal of Clinical Oncology, 2022, 40, 2106-2118.	1.6	45
8	A Phase 2 study of bortezomib combined with either idarubicin/cytarabine or cytarabine/etoposide in children with relapsed, refractory or secondary acute myeloid leukemia: A report from the Children's Oncology Group. Pediatric Blood and Cancer, 2014, 61, 1754-1760.	1.5	44
9	Transmissible ER stress reconfigures the AML bone marrow compartment. Leukemia, 2019, 33, 918-930.	7.2	39
10	Extracellular vesicles impose quiescence on residual hematopoietic stem cells in the leukemic niche. EMBO Reports, 2019, 20, e47546.	4.5	38
11	Glucocorticoids paradoxically facilitate steroid resistance in T cell acute lymphoblastic leukemias and thymocytes. Journal of Clinical Investigation, 2020, 130, 863-876.	8.2	36
12	Atovaquone is active against AML by upregulating the integrated stress pathway and suppressing oxidative phosphorylation. Blood Advances, 2019, 3, 4215-4227.	5.2	34
13	The mitochondrial peptidase, neurolysin, regulates respiratory chain supercomplex formation and is necessary for AML viability. Science Translational Medicine, 2020, 12, .	12.4	33
14	Case Series of Thrombotic Thrombocytopenic Purpura in Children and Adolescents. Journal of Pediatric Hematology/Oncology, 2003, 25, 336-339.	0.6	32
15	Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nature Communications, 2022, 13, 2801.	12.8	25
16	Toxicity assessment of molecularly targeted drugs incorporated into multiagent chemotherapy regimens for pediatric acute lymphocytic leukemia (ALL): Review from an international consensus conference. Pediatric Blood and Cancer, 2010, 54, 872-878.	1.5	22
17	A phase 2 study of bortezomib in combination with ifosfamide/vinorelbine in paediatric patients and young adults with refractory/recurrent Hodgkin lymphoma: a Children's Oncology Group study. British Journal of Haematology, 2015, 170, 118-122.	2.5	22
18	Proteasome subunit expression analysis and chemosensitivity in relapsed paediatric acute leukaemia patients receiving bortezomib-containing chemotherapy. Journal of Hematology and Oncology, 2016, 9, 82	17.0	22

#	Article	IF	CITATIONS
19	RSK inhibitor BI-D1870 inhibits acute myeloid leukemia cell proliferation by targeting mitotic exit. Oncotarget, 2020, 11, 2387-2403.	1.8	18
20	Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors. Oncotarget, 2016, 7, 74779-74796.	1.8	16
21	Population Pharmacokinetic Analysis of Bortezomib in Pediatric Leukemia Patients: Model-Based Support for Body Surface Area-Based Dosing Over the 2- to 16-Year Age Range. Journal of Clinical Pharmacology, 2017, 57, 1183-1193.	2.0	15
22	A comparison of discharge strategies after chemotherapy completion in pediatric patients with acute myeloid leukemia: a report from the Children's Oncology Group. Leukemia and Lymphoma, 2016, 57, 1567-1574.	1.3	13
23	Prediction of Primary Treatment Outcome Using Gene Expression Profiling of Pre-Treatment Biopsies Obtained from Childhood and Adolescent Hodgkin Lymphoma Patients. Blood, 2015, 126, 175-175.	1.4	12
24	Bortezomib reinduction therapy to improve response rates in pediatric ALL in first relapse: A Children's Oncology Group (COG) study (AALL07P1) Journal of Clinical Oncology, 2013, 31, 10003-10003.	1.6	11
25	Ethnic disparities relative to disease features and outcomes in children with acute myeloid leukemia. Pediatric Blood and Cancer, 2017, 64, e26487.	1.5	10
26	Cranial Radiation Can be Eliminated in Most Children with T-Cell Acute Lymphoblastic Leukemia (T-ALL) and Bortezomib Potentially Improves Survival in Children with T-Cell Lymphoblastic Lymphoma (T-LL): Results of Children's Oncology Group (COG) Trial AALL1231. Blood, 2020, 136, 11-12.	1.4	10
27	Gene expression-based model predicts outcome in children with intermediate-risk classical Hodgkin lymphoma. Blood, 2021, , .	1.4	9
28	The effects of sample handling on proteomics assessed by reverse phase protein arrays (RPPA): Functional proteomic profiling in leukemia. Journal of Proteomics, 2021, 233, 104046.	2.4	8
29	Longâ€ŧerm evidence that a pediatric oncology mentorship program for young investigators is feasible and beneficial in the cooperative group setting: A report from the Children's Oncology Group. Pediatric Blood and Cancer, 2018, 65, e26878.	1.5	7
30	Comparison of the blood, bone marrow, and cerebrospinal fluid metabolomes in children with b-cell acute lymphoblastic leukemia. Scientific Reports, 2021, 11, 19613.	3.3	7
31	Immune-Based Therapies Targeting Mage-A4 for Relapsed/Refractory Hodgkin's Lymphoma After Stem Cell Transplant Blood, 2009, 114, 4089-4089.	1.4	7
32	Clinical relevance of proteomic profiling in de novo pediatric acute myeloid leukemia: a Children's Oncology Group study. Haematologica, 2022, , .	3.5	7
33	Defining the Inflammatory Plasma Proteome in Pediatric Hodgkin Lymphoma. Cancers, 2020, 12, 3603.	3.7	6
34	Inhibition of the Sec61 translocon overcomes cytokineâ€induced glucocorticoid resistance in Tâ€cell acute lymphoblastic leukaemia. British Journal of Haematology, 2022, , .	2.5	6
35	The Anti-Tumor Activity of the NEDD8 Inhibitor Pevonedistat in Neuroblastoma. International Journal of Molecular Sciences, 2021, 22, 6565.	4.1	5
36	Phase 2 trial of brentuximab vedotin and gemcitabine for pediatric and young adult patients with relapsed or refractory Hodgkin lymphoma (HL): A Children's Oncology Group (COG) report Journal of Clinical Oncology, 2017, 35, 7527-7527.	1.6	5

#	Article	IF	CITATIONS
37	Brentuximab vedotin and association with event-free survival (EFS) in children with newly diagnosed high-risk Hodgkin lymphoma (HL): A report from the Children's Oncology Group phase 3 study AHOD1331 (NCT 02166463) Journal of Clinical Oncology, 2022, 40, 7504-7504.	1.6	5
38	Educational paper. European Journal of Pediatrics, 2011, 170, 555-559.	2.7	4
39	Center-level variation in accuracy of adverse event reporting in a clinical trial for pediatric acute myeloid leukemia: a report from the Children's Oncology Group. Haematologica, 2017, 102, e340-e343.	3.5	4
40	A Phase 2 Study of Bortezomib Combined with Reinduction Chemotherapy in Children and Young Adults with Recurrent, Refractory or Secondary Acute Myeloid Leukemia: A Children's Oncology Group (COG) Study. Blood, 2012, 120, 3580-3580.	1.4	4
41	RPPA-Profiling Identifies Patients with Low Phosphorylation Levels of HSF1 at Serine 326 As Potential Candidate for Bortezomib Treatment in Addition to Standard Therapy in Pediatric Acute Myeloid Leukemia. Blood, 2018, 132, 293-293.	1.4	4
42	Shining a light on cell signaling in leukemia through proteomics: relevance for the clinic. Expert Review of Proteomics, 2018, 15, 613-622.	3.0	3
43	IL-10 and TNFα are associated with decreased survival in low-risk pediatric acute myeloid leukemia; a children's oncology group report. Pediatric Hematology and Oncology, 0, , 1-12.	0.8	3
44	Yin and yang of glucocorticoid receptors in apoptosis. Blood, 2015, 125, 209-211.	1.4	2
45	Poorer Relapse-Free Survival in Hispanic Children Diagnosed with Acute Myeloid Leukemia Compared with Non-Hispanics: A Texas Single Institution Experience. Blood, 2015, 126, 1312-1312.	1.4	2
46	Overcoming NOTCH1-Driven Chemoresistance in T-Cell Acute Lymphoblastic Leukemia Via Metabolic Intervention with Oxphos Inhibitor. Blood, 2020, 136, 18-20.	1.4	2
47	Loss of H3K27 Methylation Identifies Poor Outcome in Adult-Onset Acute Myeloid Leukemia. Blood, 2020, 136, 24-24.	1.4	2
48	Analysis of NF-κB Pathway Proteins in Pediatric Hodgkin Lymphoma: Correlations with EBV Status and Clinical Outcome—A Children's Oncology Group Study. Lymphoma, 2012, 2012, 1-12.	0.2	1
49	Increased Tumor Specific Cytotoxic T Cell Responses and Reversion to a Favorable Cytokine Profile after Treatment in Patients with Newly Diagnosed High Risk Hodgkin Lymphoma Treated on Children's Oncology Group Trial-AHOD1331. Blood, 2020, 136, 41-42.	1.4	1
50	Coordinate Regulation of NF-κB Subunit Expression in EBV Negative, but Not EBV Positive, Pediatric Hodgkin's Lymphoma. Blood, 2008, 112, 521-521.	1.4	1
51	Coordinate Regulation of NF-κB Subunit Expression In Pediatric Hodgkin Lymphoma Patients with Rapid Early Response to Therapy, but Not Slow Early Response to Therapy. Blood, 2010, 116, 2680-2680.	1.4	1
52	Targeting the Bcl-2 Family of Proteins in Hodgkin Lymphoma: In Vitro Cytotoxicity, Target Modulation and Drug Combination Studies of the BH3 Mimetic ABT-737. Blood, 2008, 112, 3626-3626.	1.4	1
53	Signatures of Histone Modification Marks and Proteins in Pediatric Acute Myeloid Leukemia: A Comparison to Adults. Blood, 2018, 132, 2761-2761.	1.4	1
54	The Mitochondrial Protease, Neurolysin (NLN), Regulates Respiratory Chain Complex and Supercomplex Formation and Is Necessary for AML Viability. Blood, 2019, 134, 729-729.	1.4	1

#	Article	IF	CITATIONS
55	Intensification of Chemotherapy Using a Modified BFM Backbone for Children, Adolescents and Young Adults with T-Cell Acute Lymphoblastic Leukemia (T-ALL) and T-Cell Lymphoblastic Lymphoma (T-LL) Identifies Highly Chemorefractory Patients Who Benefit from Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2021, 138, 3487-3487.	1.4	1
56	Children are not large mice. European Journal of Haematology, 2013, 90, 535-535.	2.2	0
57	Feasibility of pevonedistat combined with azacitidine, fludarabine, cytarabine in pediatric relapsed/refractory AML: Results from COG ADVL1712 Journal of Clinical Oncology, 2021, 39, 10018-10018.	1.6	0
58	Targeted gene expression classifier identifies pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients at high risk for end induction minimal residual disease positivity Journal of Clinical Oncology, 2021, 39, 10002-10002.	1.6	0
59	Abstract 2349: Comparison of the blood, bone marrow, and cerebrospinal fluid metabolomes in children with acute leukemia. , 2021, , .		0
60	The Cation Transporter SLC22A16 Is Expressed in Pediatric Acute Lymphoblastic Leukemia. Blood, 2008, 112, 4471-4471.	1.4	0
61	Heterogeneity in Phenotype, Functional Capacity, and Drug Sensitivity for Pediatric Acute Leukemia Blood, 2009, 114, 2654-2654.	1.4	0
62	Improving T Cell Therapy for Relapsed EBV-Negative Hodgkin's Lymphoma by Targeting Upregulated MAGE-A4. Blood, 2011, 118, 1658-1658.	1.4	0
63	AAML0523: A Report From the Children's Oncology Group On the Efficacy of Clofarabine in Combination with Cytarabine in Pediatric Patients with Relapsed Acute Myeloid Leukemia. Blood, 2012, 120, 3604-3604.	1.4	0
64	Protein Expression Clusters Can Differentiate Leukemia Subtypes in Pediatric Leukemia. Blood, 2014, 124, 3784-3784.	1.4	0
65	Marcks Marks Resistance to Proteasome Inhibitors: Exocytosis of Polyubiquitinated Proteins in Bortezomib-Resistant Leukemia Cells. Blood, 2015, 126, 3712-3712.	1.4	0
66	Differential Expression of Adhesion Molecule Receptors May Influence Bone Marrow Microenvironment-Mediated Protection of Leukemia-Initiating Cells (LICs) in Infant MLL-rearranged (MLL-R) Acute Lymphoblastic Leukemia (ALL). Blood, 2016, 128, 1585-1585.	1.4	0
67	Recurrent Patterns of Protein Expression Signatures in Pediatric Acute Lymphoblastic Leukemia: Recognition and Therapeutic Guidance. Blood, 2016, 128, 4089-4089.	1.4	0
68	Recognition of Recurrent Protein Expression Patterns in Pediatric Acute Myeloid Leukemia Suggests New Therapeutic Targets. Blood, 2016, 128, 1712-1712.	1.4	0
69	JAK/STAT Pathway Inhibition Reverts IL7-Induced Glucocorticoid Resistance in a Subset of Human T-Cell Acute Lymphoblastic Leukemia. Blood, 2016, 128, 3963-3963.	1.4	0
70	AraC-Daunorubicin-Etoposide (ADE) Response Prediction in Pediatric AML Patients Using a Computational Biology Modeling (CBM) Based Precision Medicine Workflow. Blood, 2018, 132, 4034-4034.	1.4	0
71	Glucocorticoids Paradoxically Induce Intrinsic Steroid Resistance through a STAT5-Mediated Survival Mechanism in T-Cell Acute Lymphoblastic Leukemia. Blood, 2018, 132, 913-913.	1.4	0
72	The Mitochondrial Protease, Neurolysin (NLN), Regulates Respiratory Chain Supercomplex Formation and Represents a New Therapeutic Target for AML. Blood, 2018, 132, 1335-1335.	1.4	0

#	Article	IF	CITATIONS
73	Proteomic Landscape of De Novo Pediatric Acute Myeloid Leukemia. Blood, 2018, 132, 294-294.	1.4	0
74	AXL Expression in Pediatric AML Is Associated with Putative LSC and Correlates with a Distinct Set of Proteins Associated with Cell Metabolism, Cell Cycle, and Unfolded Protein Response. Blood, 2018, 132, 2686-2686.	1.4	0
75	Gene expression signature associated with in vitro dexamethasone resistance and post-induction minimal residual disease in pediatric T-cell acute lymphoblastic leukemia Journal of Clinical Oncology, 2019, 37, 10033-10033.	1.6	0
76	Prognostic Significance of FOXO3 in Pediatric Acute Myeloid Leukemia (AML) Patients Treated with Bortezomib Addition to Standard Therapy: Results from a Children's Oncology Group Phase 3 Clinical Trial. Blood, 2019, 134, 2676-2676.	1.4	0
77	Comprehensive Cell Specific Transcriptome Profiling of a Pediatric Hodgkin Lymphoma Cohort. Blood, 2019, 134, 2773-2773.	1.4	0
78	Proteomic Landscape of Acute Leukemia: A Comparison between ALL and AML in Adults. Blood, 2019, 134, 1461-1461.	1.4	0
79	Valosin-Containing Protein (VCP/p97) Is Prognostically Unfavorable in Subtypes of Acute Leukemia, and Negatively Correlates with UPR-Proteins IRE1 and GRP78. Blood, 2021, 138, 3447-3447.	1.4	0
80	Proteomics in Pediatric Acute Myeloid and T-Cell Lymphoblastic Leukemia: Shared Individual Protein Expression Patterns Co-Cluster into Overall Distinct Combinations. Blood, 2020, 136, 35-36.	1.4	0
81	Reverse phase protein arrays in acute leukemia: investigative and methodological challenges. Expert Review of Proteomics, 2021, 18, 1087-1097.	3.0	0