
Artur Summerfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1577379/publications.pdf Version: 2024-02-01

ADTILD SHMMEDELELD

#	Article	IF	CITATIONS
1	The pig: a model for human infectious diseases. Trends in Microbiology, 2012, 20, 50-57.	7.7	803
2	The immunology of the porcine skin and its value as a model for human skin. Molecular Immunology, 2015, 66, 14-21.	2.2	348
3	The porcine innate immune system: An update. Developmental and Comparative Immunology, 2014, 45, 321-343.	2.3	235
4	Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology, 2001, 104, 175-184.	4.4	196
5	Classical Swine Fever Virus N pro Interacts with Interferon Regulatory Factor 3 and Induces Its Proteasomal Degradation. Journal of Virology, 2007, 81, 3087-3096.	3.4	179
6	Chicken Cells Sense Influenza A Virus Infection through MDA5 and CARDIF Signaling Involving LGP2. Journal of Virology, 2012, 86, 705-717.	3.4	172
7	Vector-free transmission and persistence of Japanese encephalitis virus in pigs. Nature Communications, 2016, 7, 10832.	12.8	146
8	Lymphocyte Apoptosis during Classical Swine Fever: Implication of Activation-Induced Cell Death. Journal of Virology, 1998, 72, 1853-1861.	3.4	140
9	Porcine peripheral blood dendritic cells and natural interferon-producing cells. Immunology, 2003, 110, 440-449.	4.4	139
10	Type-A CpG oligonucleotides activate exclusively porcine natural interferon-producing cells to secrete interferon-alpha, tumour necrosis factor-alpha and interleukin-12. Immunology, 2004, 112, 28-37.	4.4	139
11	Functional Characterization of Porcine CD4+CD8+Extrathymic T Lymphocytes. Cellular Immunology, 1996, 168, 291-296.	3.0	135
12	Classical Swine Fever Virus Interferes with Cellular Antiviral Defense: Evidence for a Novel Function of N pro. Journal of Virology, 2003, 77, 7645-7654.	3.4	132
13	In Vitro Induction of Mucosa-Type Dendritic Cells by All- <i>Trans</i> Retinoic Acid. Journal of Immunology, 2007, 179, 3504-3514.	0.8	122
14	Coinfections and their molecular consequences in the porcine respiratory tract. Veterinary Research, 2020, 51, 80.	3.0	119
15	Association of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome (PMWS). Veterinary Immunology and Immunopathology, 2003, 92, 97-111.	1.2	118
16	The porcine dendritic cell family. Developmental and Comparative Immunology, 2009, 33, 299-309.	2.3	115
17	Dendritic Cells Harbor Infectious Porcine CircovirusType 2 in the Absence of Apparent Cell Modulation or Replication of theVirus. Journal of Virology, 2003, 77, 13288-13300.	3.4	104
18	Characterization and Transcriptomic Analysis of Porcine Blood Conventional and Plasmacytoid Dendritic Cells Reveals Striking Species-Specific Differences. Journal of Immunology, 2016, 197, 4791-4806.	0.8	102

#	Article	IF	CITATIONS
19	Intermediate stages in monocyte-macrophage differentiation modulate phenotype and susceptibility to virus infection. Immunology, 1999, 98, 203-212.	4.4	101
20	Immunopathogenesis of classical swine fever: role of monocytic cells. Immunology, 1999, 97, 359-366.	4.4	89
21	Properties of H7N7 influenza A virus strain SC35M lacking interferon antagonist NS1 in mice and chickens. Journal of General Virology, 2007, 88, 1403-1409.	2.9	87
22	Classical Swine Fever Virus N ^{pro} Limits Type I Interferon Induction in Plasmacytoid Dendritic Cells by Interacting with Interferon Regulatory Factor 7. Journal of Virology, 2011, 85, 8002-8011.	3.4	85
23	Vaccine-Induced, Pseudorabies Virus-Specific, Extrathymic CD4 ⁺ CD8 ⁺ Memory T-Helper Cells in Swine. Journal of Virology, 1998, 72, 4866-4873.	3.4	83
24	Interaction of classical swine fever virus with dendritic cells. Journal of General Virology, 2004, 85, 1633-1641.	2.9	82
25	Subset-dependent modulation of dendritic cell activity by circovirus type 2. Immunology, 2005, 115, 388-398.	4.4	81
26	Enhanced fitness of SARS-CoV-2 variant of concern Alpha but not Beta. Nature, 2022, 602, 307-313.	27.8	79
27	Depletion of CD4+ and CD8high+ T-cells before the onset of viraemia during classical swine fever. Veterinary Immunology and Immunopathology, 2001, 78, 3-19.	1.2	78
28	Fibrocytes are potent stimulators of anti-virus cytotoxic T cells. Journal of Leukocyte Biology, 2005, 77, 923-933.	3.3	77
29	Plasmacytoid dendritic cell activation by foot-and-mouth disease virus requires immune complexes. European Journal of Immunology, 2006, 36, 1674-1683.	2.9	74
30	Silencing of natural interferon producing cell activation by porcine circovirus type 2 DNA. Immunology, 2007, 120, 47-56.	4.4	73
31	High IFN-αResponses Associated with Depletion of Lymphocytes and Natural IFN-Producing Cells During Classical Swine Fever. Journal of Interferon and Cytokine Research, 2006, 26, 248-255.	1.2	68
32	Porcine bone marrow myeloid cells: phenotype and adhesion molecule expression. Journal of Leukocyte Biology, 1997, 62, 176-185.	3.3	67
33	Classical Swine Fever Virus Can Remain Virulent after Specific Elimination of the Interferon Regulatory Factor 3-Degrading Function of Npro. Journal of Virology, 2009, 83, 817-829.	3.4	67
34	Regulation of inflammation in Japanese encephalitis. Journal of Neuroinflammation, 2017, 14, 158.	7.2	67
35	Identification of the role of RIG-I, MDA-5 and TLR3 in sensing RNA viruses in porcine epithelial cells using lentivirus-driven RNA interference. Virus Research, 2011, 159, 9-16.	2.2	65
36	Hemagglutinin-Dependent Tropism of H5N1 Avian Influenza Virus for Human Endothelial Cells. Journal of Virology, 2009, 83, 12947-12955.	3.4	61

#	Article	IF	CITATIONS
37	Postnatal Persistent Infection with Classical Swine Fever Virus and Its Immunological Implications. PLoS ONE, 2015, 10, e0125692.	2.5	61
38	Canine distemper virus-induced depletion of uninfected lymphocytes is associated with apoptosis. Veterinary Immunology and Immunopathology, 2005, 104, 33-44.	1.2	60
39	Differentiation between MHCâ€restricted and nonâ€MHCâ€restricted porcine cytolytic T lymphocytes. Immunology, 1996, 88, 238-246.	4.4	59
40	Innate immune responses against foot-and-mouth disease virus: Current understanding and future directions. Veterinary Immunology and Immunopathology, 2009, 128, 205-210.	1.2	59
41	Low density blood granulocytic cells induced during classical swine fever are targets for virus infection. Veterinary Immunology and Immunopathology, 1998, 63, 289-301.	1.2	58
42	Japanese encephalitis virus tropism in experimentally infected pigs. Veterinary Research, 2016, 47, 34.	3.0	58
43	Comparative Dendritic Cell Biology of Veterinary Mammals. Annual Review of Animal Biosciences, 2015, 3, 533-557.	7.4	57
44	FcγRII-dependent sensitisation of natural interferon-producing cells for viral infection and interferon-α responses. European Journal of Immunology, 2005, 35, 2406-2415.	2.9	55
45	Cytokine and C-Reactive Protein Profiles Induced by Porcine Circovirus Type 2 Experimental Infection in 3-Week-Old Piglets. Viral Immunology, 2006, 19, 189-195.	1.3	54
46	Highly Pathogenic Avian Influenza Viruses Do Not Inhibit Interferon Synthesis in Infected Chickens but Can Override the Interferon-Induced Antiviral State. Journal of Virology, 2011, 85, 7730-7741.	3.4	52
47	Macrophage phagocytosis of foot-and-mouth disease virus may create infectious carriers. Immunology, 2002, 106, 537-548.	4.4	51
48	Phenotype of porcine monocytic cells: modulation of surface molecule expression upon monocyte differentiation into macrophages. Veterinary Immunology and Immunopathology, 1997, 58, 265-275.	1.2	50
49	Immune Responses Against Classical Swine Fever Virus: Between Ignorance and Lunacy. Frontiers in Veterinary Science, 2015, 2, 10.	2.2	50
50	Pathogenesis of Granulocytopenia and Bone Marrow Atrophy during Classical Swine Fever Involves Apoptosis and Necrosis of Uninfected Cells. Virology, 2000, 272, 50-60.	2.4	49
51	Induction of apoptosis in bone marrow neutrophil-lineage cells by classical swine fever virus. Journal of General Virology, 2001, 82, 1309-1318.	2.9	45
52	Innate Immune Defenses Induced by CpG Do Not Promote Vaccine-Induced Protection against Foot-and-Mouth Disease Virus in Pigs. Vaccine Journal, 2009, 16, 1151-1157.	3.1	45
53	Basic Concepts of Immune Response and Defense Development. ILAR Journal, 2005, 46, 230-240.	1.8	44
54	Impact of genotype 1 and 2 of porcine reproductive and respiratory syndrome viruses on interferon-α responses by plasmacytoid dendritic cells. Veterinary Research, 2013, 44, 33.	3.0	44

#	Article	IF	CITATIONS
55	Interspecies Major Histocompatibility Complex-Restricted Th Cell Epitope on Foot-and-Mouth Disease Virus Capsid Protein VP4. Journal of Virology, 2000, 74, 4902-4907.	3.4	41
56	Responsiveness of fibrocytes to toll-like receptor danger signals. Immunobiology, 2008, 212, 693-699.	1.9	41
57	Dendritic cells—At the front-line of pathogen attack. Veterinary Immunology and Immunopathology, 2009, 128, 7-15.	1.2	41
58	Efficient Sensing of Infected Cells in Absence of Virus Particles by Blasmacytoid Dendritic Cells Is Blocked by the Viral Ribonuclease Erns. PLoS Pathogens, 2013, 9, e1003412.	4.7	41
59	Virulence and genotype-associated infectivity of interferon-treated macrophages by porcine reproductive and respiratory syndrome viruses. Virus Research, 2014, 179, 204-211.	2.2	40
60	Double-stranded secondary structures on mRNA induce type I interferon (IFN ?/?) production and maturation of mRNA-transfected monocyte-derived dendritic cells. Journal of Gene Medicine, 2005, 7, 452-465.	2.8	39
61	Npro of classical swine fever virus contributes to pathogenicity in pigs by preventing type I interferon induction at local replication sites. Veterinary Research, 2014, 45, 47.	3.0	39
62	Immunological properties of recombinant classical swine fever virus NS3 protein in vitro and in vivo. Veterinary Research, 2006, 37, 155-168.	3.0	39
63	Classical swine fever virus replicon particles lacking the Ernsgene: a potential marker vaccine for intradermal application. Veterinary Research, 2006, 37, 655-670.	3.0	39
64	Cellular adaptive immune response against porcine circovirus type 2 in subclinically infected pigs. BMC Veterinary Research, 2009, 5, 45.	1.9	38
65	Biological and Protective Properties of Immune Sera Directed to the Influenza Virus Neuraminidase. Journal of Virology, 2015, 89, 1550-1563.	3.4	38
66	Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells. Virology, 2005, 343, 93-105.	2.4	37
67	Identification of classical swine fever virus protein E2 as a target for cytotoxic T cells by using mRNA-transfected antigen-presenting cells. Journal of General Virology, 2005, 86, 2525-2534.	2.9	37
68	Interplay of foot-and-mouth disease virus, antibodies and plasmacytoid dendritic cells: virus opsonization under non-neutralizing conditions results in enhanced interferon-alpha responses. Veterinary Research, 2012, 43, 64.	3.0	37
69	Silent infection of human dendritic cells by African and Asian strains of Zika virus. Scientific Reports, 2018, 8, 5440.	3.3	37
70	Highly pathogenic avian influenza virus H5N1 controls type I IFN induction in chicken macrophage HD-11 cells: a polygenic trait that involves NS1 and the polymerase complex. Virology Journal, 2012, 9, 7.	3.4	36
71	No Evidence for Human Monocyte-Derived Macrophage Infection and Antibody-Mediated Enhancement of SARS-CoV-2 Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 644574.	3.9	35
72	MDA5 Can Be Exploited as Efficacious Genetic Adjuvant for DNA Vaccination against Lethal H5N1 Influenza Virus Infection in Chickens. PLoS ONE, 2012, 7, e49952.	2.5	35

#	Article	IF	CITATIONS
73	Porcine B Cell Subset Responses to Toll-like Receptor Ligands. Frontiers in Immunology, 2017, 8, 1044.	4.8	34
74	Interactions of human microglia cells with Japanese encephalitis virus. Virology Journal, 2017, 14, 8.	3.4	33
75	Antiviral activity of an extract from leaves of the tropical plant Acanthospermum hispidum. Antiviral Research, 1997, 36, 55-62.	4.1	32
76	Porcine alveolar macrophages: poor accessory or effective suppressor cells for T-lymphocytes. Veterinary Immunology and Immunopathology, 2000, 77, 177-190.	1.2	32
77	Porcine Flt3 ligand and its receptor: Generation of dendritic cells and identification of a new marker for porcine dendritic cells. Developmental and Comparative Immunology, 2010, 34, 455-464.	2.3	31
78	Systems Immunology Characterization of Novel Vaccine Formulations for Mycoplasma hyopneumoniae Bacterins. Frontiers in Immunology, 2019, 10, 1087.	4.8	31
79	Immune response characteristics following emergency vaccination of pigs against foot-and-mouth disease. Vaccine, 2005, 23, 1037-1047.	3.8	30
80	Oligodendroglial degeneration in distemper: apoptosis or necrosis?. Acta Neuropathologica, 1999, 97, 279-287.	7.7	29
81	Immunogenic and replicative properties of classical swine fever virus replicon particles modified to induce IFN-α/β and carry foreign genes. Vaccine, 2011, 29, 1491-1503.	3.8	29
82	Porcine Cathelicidins Efficiently Complex and Deliver Nucleic Acids to Plasmacytoid Dendritic Cells and Can Thereby Mediate Bacteria-Induced IFN-α Responses. Journal of Immunology, 2014, 193, 364-371.	0.8	29
83	Dominance of chemokine ligand 2 and matrix metalloproteinase-2 and -9 and suppression of pro-inflammatory cytokines in the epidural compartment after intervertebral disc extrusion in a canine model. Spine Journal, 2014, 14, 2976-2984.	1.3	29
84	Precise Delineation and Transcriptional Characterization of Bovine Blood Dendritic-Cell and Monocyte Subsets. Frontiers in Immunology, 2018, 9, 2505.	4.8	29
85	Innate immune responses following emergency vaccination against foot-and-mouth disease virus in pigs. Vaccine, 2003, 21, 1466-1477.	3.8	28
86	Toll-like receptor 7 and MyD88 knockdown by lentivirus-mediated RNA interference to porcine dendritic cell subsets. Gene Therapy, 2007, 14, 836-844.	4.5	28
87	Porcine circovirus type 2 displays pluripotency in cell targeting. Virology, 2008, 378, 311-322.	2.4	28
88	High interferon type I responses in the lung, plasma and spleen during highly pathogenic H5N1 infection of chicken. Veterinary Research, 2011, 42, 6.	3.0	28
89	Sensing of Porcine Reproductive and Respiratory Syndrome Virus-Infected Macrophages by Plasmacytoid Dendritic Cells. Frontiers in Microbiology, 2016, 7, 771.	3.5	28
90	Efficacy and functionality of lipoprotein OprI from Pseudomonas aeruginosa as adjuvant for a subunit vaccine against classical swine fever. Vaccine, 2006, 24, 4757-4768.	3.8	27

#	Article	IF	CITATIONS
91	Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs. Veterinary Research, 2015, 46, 78.	3.0	27
92	Comparative analysis of canine monocyte- and bone-marrow-derived dendritic cells. Veterinary Research, 2010, 41, 40.	3.0	27
93	Phenotypic and functional modulations of porcine macrophages by interferons and interleukin-4. Developmental and Comparative Immunology, 2018, 84, 181-192.	2.3	26
94	Cholera toxin promotes the generation of semi-mature porcine monocyte-derived dendritic cells that are unable to stimulate T cells. Veterinary Research, 2007, 38, 597-612.	3.0	26
95	C-kit positive porcine bone marrow progenitor cells identified and enriched using recombinant stem cell factor. Journal of Immunological Methods, 2003, 280, 113-123.	1.4	25
96	Role of natural interferon-producing cells and T lymphocytes in porcine monocyte-derived dendritic cell maturation. Immunology, 2006, 118, 78-87.	4.4	25
97	A Japanese Encephalitis Virus Vaccine Inducing Antibodies Strongly Enhancing In Vitro Infection Is Protective in Pigs. Viruses, 2017, 9, 124.	3.3	24
98	Analysis of mAb reactive with the porcine SWC1. Veterinary Immunology and Immunopathology, 1994, 43, 255-258.	1.2	23
99	Essential role of antigenâ€presenting cellâ€derived BAFF for antibody responses. European Journal of Immunology, 2007, 37, 3122-3130.	2.9	23
100	Dendritic Cells in Innate and Adaptive Immune Responses against Influenza Virus. Viruses, 2009, 1, 1022-1034.	3.3	23
101	Contagious Bovine and Caprine Pleuropneumonia: a research community's recommendations for the development of better vaccines. Npj Vaccines, 2020, 5, 66.	6.0	23
102	Animal board invited review: Risks of zoonotic disease emergence at the interface of wildlife and livestock systems. Animal, 2021, 15, 100241.	3.3	23
103	Characterization of Canine Dendritic Cells in Healthy, Atopic, and Non-allergic Inflamed Skin. Journal of Clinical Immunology, 2010, 30, 845-854.	3.8	22
104	Workshop studies with monoclonal antibodies identifying a novel porcine differentiation antigen, SWC9. Veterinary Immunology and Immunopathology, 1998, 60, 343-349.	1.2	21
105	Dendritic Cell Internalization of Foot-and-Mouth Disease Virus: Influence of Heparan Sulfate Binding on Virus Uptake and Induction of the Immune Response. Journal of Virology, 2008, 82, 6379-6394.	3.4	21
106	Targeting the porcine immune system—Particulate vaccines in the 21st century. Developmental and Comparative Immunology, 2009, 33, 394-409.	2.3	21
107	Targeting of the Nasal Mucosa by Japanese Encephalitis Virus for Non-Vector-Borne Transmission. Journal of Virology, 2018, 92, .	3.4	21
108	Perspectives for improvement of Mycoplasma hyopneumoniae vaccines in pigs. Veterinary Research, 2021, 52, 67.	3.0	21

#	Article	IF	CITATIONS
109	Partial protection and intrathecal invasion of CD8+ T cells in acute canine distemper virus infection. Veterinary Microbiology, 2001, 83, 189-203.	1.9	20
110	Cellular processes essential for African swine fever virus to infect and replicate in primary macrophages. Veterinary Microbiology, 2010, 140, 9-17.	1.9	20
111	T-cell reprogramming through targeted CD4-coreceptor and T-cell receptor expression on maturing thymocytes by latent <i>Circoviridae</i> family member porcine circovirus type 2 cell infections in the thymus. Emerging Microbes and Infections, 2015, 4, 1-12.	6.5	20
112	Differential Ability of Bovine Antimicrobial Cathelicidins to Mediate Nucleic Acid Sensing by Epithelial Cells. Frontiers in Immunology, 2017, 8, 59.	4.8	20
113	Monocyte-Derived Dendritic Cells as Model to Evaluate Species Tropism of Mosquito-Borne Flaviviruses. Frontiers in Cellular and Infection Microbiology, 2019, 9, 5.	3.9	20
114	Targeting of Escherichia coli F4 fimbriae to Fcl ³ receptors enhances the maturation of porcine dendritic cells. Veterinary Immunology and Immunopathology, 2010, 135, 188-198.	1.2	19
115	Efficient Sensing of Avian Influenza Viruses by Porcine Plasmacytoid Dendritic Cells. Viruses, 2011, 3, 312-330.	3.3	19
116	Human TNFâ€related apoptosisâ€inducing ligandâ€expressing dendritic cells from transgenic pigs attenuate human xenogeneic T cell responses. Xenotransplantation, 2012, 19, 40-51.	2.8	19
117	A Lentiviral Vector Expressing Japanese Encephalitis Virus-like Particles Elicits Broad Neutralizing Antibody Response in Pigs. PLoS Neglected Tropical Diseases, 2015, 9, e0004081.	3.0	19
118	Characterisation of porcine bone marrow progenitor cells identified by the anti-c-kit (CD117) monoclonal antibody 2B8/BM. Journal of Immunological Methods, 2007, 321, 70-79.	1.4	18
119	A cross-species approach to disorders affecting brain and behaviour. Nature Reviews Neurology, 2018, 14, 677-686.	10.1	18
120	System immunology-based identification of blood transcriptional modules correlating to antibody responses in sheep. Npj Vaccines, 2018, 3, 41.	6.0	18
121	Analyses of monoclonal antibodies reactive with porcine CD5. Veterinary Immunology and Immunopathology, 1994, 43, 237-242.	1.2	17
122	Porcine circovirus type 2 DNA influences cytoskeleton rearrangements in plasmacytoid and monocyte-derived dendritic cells. Immunology, 2011, 132, 57-65.	4.4	17
123	Evidence of Activation and Suppression during the Early Immune Response to Foot-and-Mouth Disease Virus. Transboundary and Emerging Diseases, 2011, 58, 283-290.	3.0	17
124	Viewpoint: Factors involved in type I interferon responses during porcine virus infections. Veterinary Immunology and Immunopathology, 2012, 148, 168-171.	1.2	17
125	Virus replicon particle vaccines expressing nucleoprotein of influenza A virus mediate enhanced inflammatory responses in pigs. Scientific Reports, 2017, 7, 16379.	3.3	17
126	Identification and characterization of equine blood plasmacytoid dendritic cells. Developmental and Comparative Immunology, 2016, 65, 352-357.	2.3	16

#	Article	IF	CITATIONS
127	Efficacy of three innovative bacterin vaccines against experimental infection with Mycoplasma hyopneumoniae. Veterinary Research, 2019, 50, 91.	3.0	16
128	CX3CR1-CX3CL1-dependent cell-to-cell Japanese encephalitis virus transmission by human microglial cells. Scientific Reports, 2019, 9, 4833.	3.3	16
129	Lipopolysaccharide-induced impairment of classical swine fever virus infection in monocytic cells is sensitive to 2-aminopurine. Antiviral Research, 2002, 53, 75-81.	4.1	15
130	Propagation of classical swine fever virus in vitro circumventing heparan sulfate-adaptation. Journal of Virological Methods, 2011, 176, 85-95.	2.1	15
131	Rational Vaccine Design in Times of Emerging Diseases: The Critical Choices of Immunological Correlates of Protection, Vaccine Antigen and Immunomodulation. Pharmaceutics, 2021, 13, 501.	4.5	15
132	Heterogeneous antigenic properties of the porcine reproductive and respiratory syndrome virus nucleocapsid. Veterinary Research, 2016, 47, 117.	3.0	14
133	High-Resolution Profiling of Innate Immune Responses by Porcine Dendritic Cell Subsets in vitro and in vivo. Frontiers in Immunology, 2020, 11, 1429.	4.8	14
134	Intracellular membrane association of the N-terminal domain of classical swine fever virus NS4B determines viral genome replication and virulence. Journal of General Virology, 2015, 96, 2623-2635.	2.9	13
135	Neonatal porcine blood derived dendritic cell subsets show activation after TLR2 or TLR9 stimulation. Developmental and Comparative Immunology, 2018, 84, 361-370.	2.3	13
136	The Human Upper Respiratory Tract Epithelium Is Susceptible to Flaviviruses. Frontiers in Microbiology, 2019, 10, 811.	3.5	13
137	Differential innate immune responses induced by Mycoplasma hyopneumoniae and Mycoplasma hyorhinis in various types of antigen presenting cells. Veterinary Microbiology, 2020, 240, 108541.	1.9	13
138	Interleukin-2 dependent selective activation of porcine γδT lymphocytes by an extract from the leaves of Acanthospermum hispidum. International Journal of Immunopharmacology, 1998, 20, 85-98.	1.1	12
139	Lipopolysaccharide and phorbol 12-myristate 13-acetate both impair monocyte differentiation, relating cellular function to virus susceptibility. Immunology, 2001, 103, 488-497.	4.4	12
140	Special issue on porcine immunology: An introduction from the guest editor. Developmental and Comparative Immunology, 2009, 33, 265-266.	2.3	12
141	Transcriptomic profiling of bovine blood dendritic cells and monocytes following TLR stimulation. European Journal of Immunology, 2020, 50, 1691-1711.	2.9	12
142	Polarization of Macrophages in Epidural Inflammation Induced by Canine Intervertebral Disc Herniation. Frontiers in Veterinary Science, 2020, 7, 32.	2.2	12
143	N ^{pro} of Classical Swine Fever Virus Prevents Type I Interferon-Mediated Priming of Conventional Dendritic Cells for Enhanced Interferon-α Response. Journal of Interferon and Cytokine Research, 2012, 32, 221-229.	1.2	11
144	An in vitro immune response model to determine tetanus toxoid antigen (vaccine) specific immunogenicity: Selection of sensitive assay criteria. Vaccine, 2006, 24, 3076-3083.	3.8	10

#	Article	IF	CITATIONS
145	Porcine B-cell activating factor promotes anti-FMDV antibodies in vitro but not in vivo after DNA vaccination of pigs. Veterinary Immunology and Immunopathology, 2007, 120, 115-123.	1.2	10
146	Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells. Virology, 2012, 427, 1-9.	2.4	9
147	Preserved immunogenicity of an inactivated vaccine based on foot-and-mouth disease virus particles with improved stability. Veterinary Microbiology, 2017, 203, 275-279.	1.9	9
148	Effect of Clostridium perfringens \hat{l}^2 -Toxin on Platelets. Toxins, 2017, 9, 336.	3.4	9
149	The Small-Compound Inhibitor K22 Displays Broad Antiviral Activity against Different Members of the Family Flaviviridae and Offers Potential as a Panviral Inhibitor. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	9
150	In vitro characterization of PRRSV isolates with different in vivo virulence using monocyte-derived macrophages. Veterinary Microbiology, 2019, 231, 139-146.	1.9	9
151	Systems Immunology Analyses Following Porcine Respiratory and Reproductive Syndrome Virus Infection and Vaccination. Frontiers in Immunology, 2021, 12, 779747.	4.8	9
152	Differential Adhesion Molecule Expression on Porcine Mononuclear Cell Populations. Scandinavian Journal of Immunology, 1998, 47, 487-495.	2.7	8
153	Effect of synthetic agonists of toll-like receptor 9 on canine lymphocyte proliferation and cytokine production in vitro. Veterinary Immunology and Immunopathology, 2008, 124, 120-131.	1.2	8
154	Partial Protection against Porcine Influenza A Virus by a Hemagglutinin-Expressing Virus Replicon Particle Vaccine in the Absence of Neutralizing Antibodies. Frontiers in Immunology, 2016, 7, 253.	4.8	8
155	Regulation of Porcine Plasmacytoid Dendritic Cells by Cytokines. PLoS ONE, 2013, 8, e60893.	2.5	8
156	Virus replicon particles expressing porcine reproductive and respiratory syndrome virus proteins elicit immune priming but do not confer protection from viremia in pigs. Veterinary Research, 2016, 47, 33.	3.0	7
157	Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells. PLoS ONE, 2016, 11, e0158503.	2.5	7
158	Porcine circovirus type 2 stimulates plasmacytoid dendritic cells in the presence of IFN-gamma. Veterinary Immunology and Immunopathology, 2013, 156, 223-228.	1.2	6
159	No Evidence for a Role for Antibodies during Vaccination-Induced Enhancement of Porcine Reproductive and Respiratory Syndrome. Viruses, 2019, 11, 829.	3.3	6
160	Pulmonary mesenchymal stem cells are engaged in distinct steps of host response to respiratory syncytial virus infection. PLoS Pathogens, 2021, 17, e1009789.	4.7	6
161	Mycoplasma contamination and viral immunomodulatory activity: Dendritic cells open Pandora's box. Immunology Letters, 2007, 110, 101-109.	2.5	4
162	Are adenoviral vectors the future for foot-and-mouth disease vaccines?. Future Virology, 2010, 5, 1-3.	1.8	3

#	Article	IF	CITATIONS
163	Transcriptome of microglia reveals a speciesâ€ s pecific expression profile in bovines with conserved and new signature genes. Glia, 2021, 69, 1932-1949.	4.9	3
164	Identification of Differential Responses of Goat PBMCs to PPRV Virulence Using a Multi-Omics Approach. Frontiers in Immunology, 2021, 12, 745315.	4.8	3
165	Comparative pathogenesis of peste des petits ruminants virus strains of difference virulence. Veterinary Research, 2022, 53, .	3.0	3
166	Life cycle of Zika virus in human dendritic cells. International Journal of Infectious Diseases, 2016, 53, 163.	3.3	2
167	Cytokine expression in bovine PBMC cultures stimulated with Hypoderma lineatum antigens. Veterinary Parasitology, 2020, 283, 109165.	1.8	1
168	Reduced Virus Load in Lungs of Pigs Challenged with Porcine Reproductive and Respiratory Syndrome Virus after Vaccination with Virus Replicon Particles Encoding Conserved PRRSV Cytotoxic T-Cell Epitopes. Vaccines, 2021, 9, 208.	4.4	1
169	Innate to Adaptive: Immune Defence Handling of Foot-and-mouth Disease Virus. , 2017, , 211-274.		1
170	Modulation of peripheral dendritic cells towards mucosa-type dendritic cells by all-trans retinoic acid. Veterinary Immunology and Immunopathology, 2009, 128, 264.	1.2	0
171	Experimental induction of respiratory syncytial virus immunopathogenesis in neonatal lambs. , 2019, , .		0