
Scott B Papp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1576573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81-85.	27.8	550
2	Microresonator frequency comb optical clock. Optica, 2014, 1, 10.	9.3	367
3	Architecture for the photonic integration of an optical atomic clock. Optica, 2019, 6, 680.	9.3	346
4	Soliton crystals in Kerr resonators. Nature Photonics, 2017, 11, 671-676.	31.4	300
5	Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 2017, 4, 193.	9.3	235
6	Searching for exoplanets using a microresonator astrocomb. Nature Photonics, 2019, 13, 25-30.	31.4	194
7	Molecular fingerprinting with bright, broadband infrared frequency combs. Optica, 2018, 5, 727.	9.3	160
8	Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nature Communications, 2020, 11, 1331.	12.8	151
9	Thermal and Nonlinear Dissipative-Soliton Dynamics in Kerr-Microresonator Frequency Combs. Physical Review Letters, 2018, 121, 063902.	7.8	133
10	Electronic synthesis of light. Optica, 2017, 4, 406.	9.3	115
11	Ultrafast electro-optic light with subcycle control. Science, 2018, 361, 1358-1363.	12.6	114
12	Dual-microcavity narrow-linewidth Brillouin laser. Optica, 2015, 2, 225.	9.3	96
13	Ultrabroadband Supercontinuum Generation and Frequency-Comb Stabilization Using On-Chip Waveguides with Both Cubic and Quadratic Nonlinearities. Physical Review Applied, 2017, 8, .	3.8	90
14	Stellar spectroscopy in the near-infrared with a laser frequency comb. Optica, 2019, 6, 233.	9.3	86
15	Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nature Photonics, 2019, 13, 593-601.	31.4	82
16	Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Optics Letters, 2017, 42, 2314.	3.3	80
17	Laser-machined ultra-high-Q microrod resonators for nonlinear optics. Applied Physics Letters, 2013, 102, .	3.3	74
18	Heterogeneously Integrated GaAs Waveguides on Insulator for Efficient Frequency Conversion. Laser and Photonics Reviews, 2018, 12, 1800149.	8.7	73

SCOTT B PAPP

#	Article	IF	CITATIONS
19	Tantala Kerr nonlinear integrated photonics. Optica, 2021, 8, 811.	9.3	68
20	Strong frequency conversion in heterogeneously integrated GaAs resonators. APL Photonics, 2019, 4, 036103.	5.7	63
21	Spontaneous pulse formation in edgeless photonic crystal resonators. Nature Photonics, 2021, 15, 461-467.	31.4	61
22	Optical-Frequency Measurements with a Kerr Microcomb and Photonic-Chip Supercontinuum. Physical Review Applied, 2018, 9, .	3.8	60
23	Self-organized nonlinear gratings for ultrafast nanophotonics. Nature Photonics, 2019, 13, 494-499.	31.4	60
24	Interlocking Kerr-microresonator frequency combs for microwave to optical synthesis. Optics Letters, 2018, 43, 2933.	3.3	59
25	Thermal decoherence and laser cooling of Kerr microresonator solitons. Nature Photonics, 2020, 14, 480-485.	31.4	56
26	Kerr-microresonator solitons from a chirped background. Optica, 2018, 5, 1304.	9.3	52
27	Terahertz-Rate Kerr-Microresonator Optical Clockwork. Physical Review X, 2019, 9, .	8.9	49
28	Direct Kerr frequency comb atomic spectroscopy and stabilization. Science Advances, 2020, 6, eaax6230.	10.3	49
29	Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. Optics Letters, 2019, 44, 4737.	3.3	49
30	Mechanical Control of a Microrod-Resonator Optical Frequency Comb. Physical Review X, 2013, 3, .	8.9	48
31	High-harmonic generation in periodically poled waveguides. Optica, 2017, 4, 1538.	9.3	48
32	Milliwatt-threshold visible–telecom optical parametric oscillation using silicon nanophotonics. Optica, 2019, 6, 1535.	9.3	44
33	Tuning Kerr-Soliton Frequency Combs to Atomic Resonances. Physical Review Applied, 2019, 11, .	3.8	42
34	Deuterated silicon nitride photonic devices for broadband optical frequency comb generation. Optics Letters, 2018, 43, 1527.	3.3	40
35	Photonic-Chip Supercontinuum with Tailored Spectra for Counting Optical Frequencies. Physical Review Applied, 2017, 8, .	3.8	40
36	Kerr-Microresonator Soliton Frequency Combs at Cryogenic Temperatures. Physical Review Applied, 2019, 12, .	3.8	37

SCOTT B PAPP

#	Article	IF	CITATIONS
37	Ultranarrow Linewidth Photonicâ€Atomic Laser. Laser and Photonics Reviews, 2020, 14, 1900293.	8.7	37
38	Theory of Kerr frequency combs in Fabry-Perot resonators. Physical Review A, 2018, 98, .	2.5	36
39	Quasi-Phase-Matched Supercontinuum Generation in Photonic Waveguides. Physical Review Letters, 2018, 120, 053903.	7.8	34
40	Generating few-cycle pulses with integrated nonlinear photonics. Optics Express, 2019, 27, 37374.	3.4	34
41	Subharmonic Entrainment of Kerr Breather Solitons. Physical Review Letters, 2019, 123, 173904.	7.8	30
42	30  GHz electro-optic frequency comb spanning 300  THz in the near infrared and visible. Optic 2019, 44, 2673.	s Letters, 3.3	30
43	36  Hz integral linewidth laser based on a photonic integrated 4.0  m coil resonator. Optica, 202	2 2, 9, 770	. 29
44	Optically synchronized fibre links using spectrally pure chip-scale lasers. Nature Photonics, 2021, 15, 588-593.	31.4	28
45	A continuum of bright and dark-pulse states in a photonic-crystal resonator. Nature Communications, 2022, 13, .	12.8	28
46	Probing material absorption and optical nonlinearity of integrated photonic materials. Nature Communications, 2022, 13, .	12.8	27
47	A microrod-resonator Brillouin laser with 240 Hz absolute linewidth. New Journal of Physics, 2016, 18, 045001.	2.9	25
48	Generating Octave-Bandwidth Soliton Frequency Combs with Compact Low-Power Semiconductor Lasers. Physical Review Applied, 2020, 14, .	3.8	25
49	Mid-infrared frequency combs at 10  GHz. Optics Letters, 2020, 45, 3677.	3.3	24
50	Towards integrated photonic interposers for processing octave-spanning microresonator frequency combs. Light: Science and Applications, 2021, 10, 109.	16.6	22
51	Harnessing Dispersion in Soliton Microcombs to Mitigate Thermal Noise. Physical Review Letters, 2020, 125, 153901.	7.8	21
52	Frequency-Stabilized Links for Coherent WDM Fiber Interconnects in the Datacenter. Journal of Lightwave Technology, 2020, 38, 3376-3386.	4.6	21
53	Hybrid InP and SiN integration of an octave-spanning frequency comb. APL Photonics, 2021, 6, .	5.7	20
54	Nanophotonic tantala waveguides for supercontinuum generation pumped at 1560  nm. Optics Letters, 2020, 45, 4192.	3.3	19

Scott B Papp

#	Article	IF	CITATIONS
55	Integrated reference cavity with dual-mode optical thermometry for frequency correction. Optica, 2021, 8, 1481.	9.3	19
56	Group-velocity-dispersion engineering of tantala integrated photonics. Optics Letters, 2021, 46, 817.	3.3	17
57	Dual-comb spectroscopy with tailored spectral broadening in Si ₃ N ₄ nanophotonics. Optics Express, 2019, 27, 11869.	3.4	17
58	Ultra-precise optical-frequency stabilization with heterogeneous III–V/Si lasers. Optics Letters, 2020, 45, 5275.	3.3	16
59	Low loss (Al)GaAs on an insulator waveguide platform. Optics Letters, 2019, 44, 4075.	3.3	16
60	Microresonator Brillouin laser stabilization using a microfabricated rubidium cell. Optics Express, 2016, 24, 14513.	3.4	14
61	Broadband, electro-optic, dual-comb spectrometer for linear and nonlinear measurements. Optics Express, 2020, 28, 29148.	3.4	11
62	Microrod Optical Frequency Reference in the Ambient Environment. Physical Review Applied, 2019, 12, .	3.8	9
63	Kerr Solitons with Tantala Ring Resonators. , 2019, , .		7
64	Photonic crystal resonators for inverse-designed multi-dimensional optical interconnects. Optics Letters, 2022, 47, 3063.	3.3	7
65	Synchronization of Electro-Optically Modulated Kerr Soliton to a Chip-Scale Mode-Locked Laser PIC via Regenerative Harmonic Injection Locking. Journal of Lightwave Technology, 2022, 40, 1742-1748.	4.6	3
66	Self-organized nonlinear gratings for ultrafast nanophotonics. , 2018, , .		2
67	Probing the Material Loss and Optical Nonlinearity of Integrated Photonic Materials. , 2021, , .		1
68	Laser Frequency Drift Stabilization using an Integrated Dual-Mode Locking Si3N4 Waveguide Reference Cavity. , 2021, , .		1
69	Optical synthesis by spectral translation. , 2020, , .		1
70	Kerr Microresonator Soliton Frequency Combs at Cryogenic Temperatures. Physical Review Applied, 2019, 12, .	3.8	1
71	30 GHz Supercontinuum Generation for Astronomy with Efficient SiN Waveguides. , 2019, , .		0
72	Few-cycle pulses and ultraflat supercontinuum with silicon-nitride waveguides. , 2019, , .		0

#	Article	IF	CITATIONS
73	Efficient widely-separated optical parametric oscillation. , 2020, , .		Ο
74	Degenerate four-wave mixing in photonic crystal resonators. , 2020, , .		0
75	Integrated photonic four-wave-mixing optical synthesizer. , 2021, , .		Ο
76	Narrow Linewidth Lasers for Low-Energy Coherent Communications. , 2022, , .		0