List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1575160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 2009, 30, 1545-1614.	1.5	7,077
2	CHARMM general force field: A force field for drugâ€like molecules compatible with the CHARMM allâ€atom additive biological force fields. Journal of Computational Chemistry, 2010, 31, 671-690.	1.5	4,718
3	CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods, 2017, 14, 71-73.	9.0	3,959
4	Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone Ï•, Ï^ and Side-Chain χ ₁ and χ ₂ Dihedral Angles. Journal of Chemical Theory and Computation, 2012, 8, 3257-3273.	2.3	3,696
5	Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. Journal of Physical Chemistry B, 2010, 114, 7830-7843.	1.2	3,676
6	Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of Computational Chemistry, 2004, 25, 1400-1415.	1.5	3,145
7	CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 2013, 34, 2135-2145.	1.5	2,613
8	CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Journal of Chemical Theory and Computation, 2016, 12, 405-413.	2.3	2,567
9	All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry, 2000, 21, 86-104.	1.5	1,460
10	Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing. Journal of Chemical Information and Modeling, 2012, 52, 3144-3154.	2.5	1,409
11	Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges. Journal of Chemical Information and Modeling, 2012, 52, 3155-3168.	2.5	1,278
12	Empirical force fields for biological macromolecules: Overview and issues. Journal of Computational Chemistry, 2004, 25, 1584-1604.	1.5	1,134
13	Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 2000, 56, 257-265.	1.2	923
14	Improved Treatment of the Protein Backbone in Empirical Force Fields. Journal of the American Chemical Society, 2004, 126, 698-699.	6.6	912
15	An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids. Journal of Physical Chemistry B, 2000, 104, 7510-7515.	1.2	729
16	All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. Journal of Computational Chemistry, 2000, 21, 105-120.	1.5	701
17	An all-atom empirical energy function for the simulation of nucleic acids. Journal of the American Chemical Society, 1995, 117, 11946-11975.	6.6	690
18	Extension of the CHARMM general force field to sulfonylâ€containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 2012, 33, 2451-2468.	1.5	659

#	Article	IF	CITATIONS
19	A simple polarizable model of water based on classical Drude oscillators. Journal of Chemical Physics, 2003, 119, 5185-5197.	1.2	635
20	CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses. Journal of Chemical Theory and Computation, 2009, 5, 2353-2370.	2.3	578
21	CHARMM Additive All-Atom Force Field for Carbohydrate Derivatives and Its Utility in Polysaccharide and Carbohydrate–Protein Modeling. Journal of Chemical Theory and Computation, 2011, 7, 3162-3180.	2.3	559
22	A polarizable model of water for molecular dynamics simulations of biomolecules. Chemical Physics Letters, 2006, 418, 245-249.	1.2	548
23	Additive empirical force field for hexopyranose monosaccharides. Journal of Computational Chemistry, 2008, 29, 2543-2564.	1.5	483
24	Optimization of the CHARMM Additive Force Field for DNA: Improved Treatment of the BI/BII Conformational Equilibrium. Journal of Chemical Theory and Computation, 2012, 8, 348-362.	2.3	464
25	An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications. Chemical Reviews, 2016, 116, 4983-5013.	23.0	434
26	Polyunsaturated Fatty Acids in Lipid Bilayers:  Intrinsic and Environmental Contributions to Their Unique Physical Properties. Journal of the American Chemical Society, 2002, 124, 318-326.	6.6	423
27	Molecular Dynamics Studies of Polyethylene Oxide and Polyethylene Glycol: Hydrodynamic Radius and Shape Anisotropy. Biophysical Journal, 2008, 95, 1590-1599.	0.2	415
28	CHARMM fluctuating charge force field for proteins: Il Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. Journal of Computational Chemistry, 2004, 25, 1504-1514.	1.5	410
29	Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field. Journal of Chemical Theory and Computation, 2010, 6, 774-786.	2.3	401
30	Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Chemical Reviews, 2019, 119, 7940-7995.	23.0	386
31	Impact of 2′â€hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM allâ€atom additive force field for RNA. Journal of Computational Chemistry, 2011, 32, 1929-1943.	1.5	341
32	Polarizable Force Field for Peptides and Proteins Based on the Classical Drude Oscillator. Journal of Chemical Theory and Computation, 2013, 9, 5430-5449.	2.3	329
33	Importance of the CMAP Correction to the CHARMM22 Protein Force Field: Dynamics of Hen Lysozyme. Biophysical Journal, 2006, 90, L36-L38.	0.2	321
34	Computer-Aided Drug Design Methods. Methods in Molecular Biology, 2017, 1520, 85-106.	0.4	317
35	Development of the CHARMM Force Field for Lipids. Journal of Physical Chemistry Letters, 2011, 2, 1526-1532.	2.1	316
36	Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications. Theoretical Chemistry Accounts, 2009, 124, 11-28.	0.5	314

#	Article	IF	CITATIONS
37	An ab Initio Study on the Torsional Surface of Alkanes and Its Effect on Molecular Simulations of Alkanes and a DPPC Bilayer. Journal of Physical Chemistry B, 2005, 109, 5300-5311.	1.2	303
38	Decoding the Signaling of a GPCR Heteromeric Complex Reveals a Unifying Mechanism of Action of Antipsychotic Drugs. Cell, 2011, 147, 1011-1023.	13.5	271
39	A Small-Molecule Inhibitor of BCL6 Kills DLBCL Cells In Vitro and In Vivo. Cancer Cell, 2010, 17, 400-411.	7.7	263
40	Determination of Electrostatic Parameters for a Polarizable Force Field Based on the Classical Drude Oscillator. Journal of Chemical Theory and Computation, 2005, 1, 153-168.	2.3	260
41	Molecular Dynamics Simulation Analysis of a Sodium Dodecyl Sulfate Micelle in Aqueous Solution: Decreased Fluidity of the Micelle Hydrocarbon Interior. The Journal of Physical Chemistry, 1995, 99, 1846-1855.	2.9	253
42	The Structure of Aqueous Guanidinium Chloride Solutions. Journal of the American Chemical Society, 2004, 126, 11462-11470.	6.6	245
43	Additive and Classical Drude Polarizable Force Fields for Linear and Cyclic Ethers. Journal of Chemical Theory and Computation, 2007, 3, 1120-1133.	2.3	233
44	High-Performance Scalable Molecular Dynamics Simulations of a Polarizable Force Field Based on Classical Drude Oscillators in NAMD. Journal of Physical Chemistry Letters, 2011, 2, 87-92.	2.1	233
45	CHARMMâ€GUI 10 years for biomolecular modeling and simulation. Journal of Computational Chemistry, 2017, 38, 1114-1124.	1.5	224
46	CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 861-871.	1.1	223
47	CHARMM-GUI PDB Manipulator for Advanced Modeling and Simulations of Proteins Containing Nonstandard Residues. Advances in Protein Chemistry and Structural Biology, 2014, 96, 235-265.	1.0	214
48	Recent Advances in Ligand-Based Drug Design: Relevance and Utility of the Conformationally Sampled Pharmacophore Approach. Current Computer-Aided Drug Design, 2011, 7, 10-22.	0.8	210
49	Development of an Empirical Force Field for Silica. Application to the Quartzâ^'Water Interface. Journal of Physical Chemistry B, 2006, 110, 2782-2792.	1.2	209
50	Computational Fragment-Based Binding Site Identification by Ligand Competitive Saturation. PLoS Computational Biology, 2009, 5, e1000435.	1.5	208
51	Force Field Influence on the Observation of π-Helical Protein Structures in Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2003, 107, 2831-2836.	1.2	204
52	Polarizable Empirical Force Field for Alkanes Based on the Classical Drude Oscillator Model. Journal of Physical Chemistry B, 2005, 109, 18988-18999.	1.2	193
53	CHARMM All-Atom Additive Force Field for Sphingomyelin: Elucidation of Hydrogen Bonding and of Positive Curvature. Biophysical Journal, 2014, 107, 134-145.	0.2	192
54	An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications. , 1996, , 31-81.		183

#	Article	IF	CITATIONS
55	Combinedab initio/empirical approach for optimization of Lennard-Jones parameters. Journal of Computational Chemistry, 1998, 19, 334-348.	1.5	181
56	Recent developments and applications of the CHARMM force fields. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 167-185.	6.2	173
57	Glycan reader: Automated sugar identification and simulation preparation for carbohydrates and glycoproteins. Journal of Computational Chemistry, 2011, 32, 3135-3141.	1.5	172
58	Comparison of Protein Force Fields for Molecular Dynamics Simulations. Methods in Molecular Biology, 2008, 443, 63-88.	0.4	171
59	CHARMM Additive All-Atom Force Field for Glycosidic Linkages in Carbohydrates Involving Furanoses. Journal of Physical Chemistry B, 2010, 114, 12981-12994.	1.2	170
60	A molecular mechanics force field for NAD+ NADH, and the pyrophosphate groups of nucleotides. Journal of Computational Chemistry, 1997, 18, 221-239.	1.5	168
61	Molecular-Level Organization of Saturated and Polyunsaturated Fatty Acids in a Phosphatidylcholine Bilayer Containing Cholesterolâ€. Biochemistry, 2004, 43, 15318-15328.	1.2	168
62	Parametrization of halogen bonds in the CHARMM general force field: Improved treatment of ligand–protein interactions. Bioorganic and Medicinal Chemistry, 2016, 24, 4812-4825.	1.4	168
63	A Hybrid Mechanism of Action for BCL6 in B Cells Defined by Formation of Functionally Distinct Complexes at Enhancers and Promoters. Cell Reports, 2013, 4, 578-588.	2.9	161
64	A Polarizable Force Field of Dipalmitoylphosphatidylcholine Based on the Classical Drude Model for Molecular Dynamics Simulations of Lipids. Journal of Physical Chemistry B, 2013, 117, 9142-9160.	1.2	159
65	Molecular dynamics simulations of nucleic acid–protein complexes. Current Opinion in Structural Biology, 2008, 18, 194-199.	2.6	157
66	Free Energy and Structural Pathways of Base Flipping in a DNA GCGC Containing Sequence. Journal of Molecular Biology, 2002, 319, 141-160.	2.0	151
67	Rational Design of Human DNA Ligase Inhibitors that Target Cellular DNA Replication and Repair. Cancer Research, 2008, 68, 3169-3177.	0.4	151
68	Consideration of Molecular Weight during Compound Selection in Virtual Target-Based Database Screening. Journal of Chemical Information and Computer Sciences, 2003, 43, 267-272.	2.8	150
69	CHARMM Additive All-Atom Force Field for Acyclic Polyalcohols, Acyclic Carbohydrates, and Inositol. Journal of Chemical Theory and Computation, 2009, 5, 1315-1327.	2.3	150
70	Polarizable Empirical Force Field for Aromatic Compounds Based on the Classical Drude Oscillator. Journal of Physical Chemistry B, 2007, 111, 2873-2885.	1.2	149
71	Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force Field Based on the Classical Drude Oscillator. Journal of Chemical Theory and Computation, 2006, 2, 1587-1597.	2.3	142
72	Recent Advances in Polarizable Force Fields for Macromolecules: Microsecond Simulations of Proteins Using the Classical Drude Oscillator Model. Journal of Physical Chemistry Letters, 2014, 5, 3144-3150.	2.1	139

#	Article	IF	CITATIONS
73	Current Status of Protein Force Fields for Molecular Dynamics Simulations. Methods in Molecular Biology, 2015, 1215, 47-71.	0.4	139
74	Force field development and simulations of intrinsically disordered proteins. Current Opinion in Structural Biology, 2018, 48, 40-48.	2.6	139
75	Polarizable Empirical Force Field for the Primary and Secondary Alcohol Series Based on the Classical Drude Model. Journal of Chemical Theory and Computation, 2007, 3, 1927-1946.	2.3	136
76	Allâ€atom polarizable force field for DNA based on the classical drude oscillator model. Journal of Computational Chemistry, 2014, 35, 1219-1239.	1.5	136
77	The Expanding Role of the BCL6 Oncoprotein as a Cancer Therapeutic Target. Clinical Cancer Research, 2017, 23, 885-893.	3.2	133
78	Rationally designed BCL6 inhibitors target activated B cell diffuse large B cell lymphoma. Journal of Clinical Investigation, 2016, 126, 3351-3362.	3.9	133
79	Accurate Calculation of Hydration Free Energies using Pair-Specific Lennard-Jones Parameters in the CHARMM Drude Polarizable Force Field. Journal of Chemical Theory and Computation, 2010, 6, 1181-1198.	2.3	131
80	Inclusion of Many-Body Effects in the Additive CHARMM Protein CMAP Potential Results in Enhanced Cooperativity of α-Helix and β-Hairpin Formation. Biophysical Journal, 2012, 103, 1045-1051.	0.2	130
81	Protein-facilitated base flipping in DNA by cytosine-5-methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 68-73.	3.3	128
82	CHARMM Additive All-Atom Force Field for Aldopentofuranoses, Methyl-aldopentofuranosides, and Fructofuranose. Journal of Physical Chemistry B, 2009, 113, 12466-12476.	1.2	128
83	Intrinsic Conformational Properties of Deoxyribonucleosides: Implicated Role for Cytosine in the Equilibrium Among the A, B, and Z Forms of DNA. Biophysical Journal, 1999, 76, 3206-3218.	0.2	125
84	Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5455-5460.	3.3	124
85	Understanding the Dielectric Properties of Liquid Amides from a Polarizable Force Field. Journal of Physical Chemistry B, 2008, 112, 3509-3521.	1.2	122
86	Point mutation E1099K in MMSET/NSD2 enhances its methyltranferase activity and leads to altered global chromatin methylation in lymphoid malignancies. Leukemia, 2014, 28, 198-201.	3.3	122
87	Development of CHARMM Polarizable Force Field for Nucleic Acid Bases Based on the Classical Drude Oscillator Model. Journal of Physical Chemistry B, 2011, 115, 580-596.	1.2	121
88	Identification of Novel Extracellular Signal-Regulated Kinase Docking Domain Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 4586-4595.	2.9	112
89	Intrinsic Conformational Energetics Associated with the Glycosyl Torsion in DNA: A Quantum Mechanical Study. Biophysical Journal, 2002, 82, 1554-1569.	0.2	111
90	Development of a Polarizable Intermolecular Potential Function (PIPF) for Liquid Amides and Alkanes. Journal of Chemical Theory and Computation, 2007, 3, 1878-1889.	2.3	107

#	Article	IF	CITATIONS
91	Reproducing Crystal Binding Modes of Ligand Functional Groups Using Site-Identification by Ligand Competitive Saturation (SILCS) Simulations. Journal of Chemical Information and Modeling, 2011, 51, 877-896.	2.5	105
92	Automated conformational energy fitting for force-field development. Journal of Molecular Modeling, 2008, 14, 667-679.	0.8	104
93	A Small Molecule Agonist of EphA2 Receptor Tyrosine Kinase Inhibits Tumor Cell Migration In Vitro and Prostate Cancer Metastasis In Vivo. PLoS ONE, 2012, 7, e42120.	1.1	103
94	Six-site polarizable model of water based on the classical Drude oscillator. Journal of Chemical Physics, 2013, 138, 034508.	1.2	103
95	Simulation study of ion pairing in concentrated aqueous salt solutions with a polarizable force field. Faraday Discussions, 2013, 160, 135-149.	1.6	102
96	Active site of human liver aldehyde dehydrogenase. Biochemistry, 1987, 26, 5679-5684.	1.2	101
97	Inclusion of Multiple Fragment Types in the Site Identification by Ligand Competitive Saturation (SILCS) Approach. Journal of Chemical Information and Modeling, 2013, 53, 3384-3398.	2.5	101
98	Combinedab initio/empirical approach for optimization of Lennard-Jones parameters for polar-neutral compounds. Journal of Computational Chemistry, 2002, 23, 199-213.	1.5	100
99	CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates. Journal of Chemical Theory and Computation, 2012, 8, 759-776.	2.3	100
100	Many-Body Polarization Effects and the Membrane Dipole Potential. Journal of the American Chemical Society, 2009, 131, 2760-2761.	6.6	98
101	Progress toward chemical accuracy in the computer simulation of condensed phase reactions Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3698-3703.	3.3	94
102	Identification and Characterization of Small Molecule Inhibitors of the Calcium-Dependent S100Bâ^'p53 Tumor Suppressor Interaction. Journal of Medicinal Chemistry, 2004, 47, 5085-5093.	2.9	90
103	Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids. Journal of Chemical Theory and Computation, 2017, 13, 4535-4552.	2.3	90
104	Influence of Magnesium Ions on Duplex DNA Structural, Dynamic, and Solvation Properties. Journal of Physical Chemistry B, 1997, 101, 646-650.	1.2	88
105	A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nature Communications, 2015, 6, 7316.	5.8	88
106	Molecular Mechanics. Current Pharmaceutical Design, 2014, 20, 3281-3292.	0.9	87
107	Importance of attractive van der Waals contribution in empirical energy function models for the heat of vaporization of polar liquids. The Journal of Physical Chemistry, 1991, 95, 10559-10560.	2.9	86
108	Computational Identification of Inhibitors of Protein-Protein Interactions. Current Topics in Medicinal Chemistry, 2007, 7, 63-82.	1.0	86

#	Article	IF	CITATIONS
109	Computational Approaches for Investigating Base Flipping in Oligonucleotides. Chemical Reviews, 2006, 106, 489-505.	23.0	85
110	Do Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding?. Journal of Physical Chemistry B, 2017, 121, 6813-6821.	1.2	85
111	CH/Ï€ interactions involving aromatic amino acids: Refinement of the CHARMM tryptophan force field. Journal of Computational Chemistry, 2005, 26, 1452-1463.	1.5	83
112	Conformational Properties of the Deoxyribose and Ribose Moieties of Nucleic Acids:Â A Quantum Mechanical Study. Journal of Physical Chemistry B, 1998, 102, 6669-6678.	1.2	82
113	The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions. Journal of Chemical Physics, 2017, 147, 161727.	1.2	82
114	Is Arginine Charged in a Membrane?. Biophysical Journal, 2008, 94, L11-L13.	0.2	81
115	Competition among Li ⁺ , Na ⁺ , K ⁺ , and Rb ⁺ Monovalent Ions for DNA in Molecular Dynamics Simulations Using the Additive CHARMM36 and Drude Polarizable Force Fields. Journal of Physical Chemistry B, 2015, 119, 4428-4440.	1.2	80
116	Implementation of extended <scp>L</scp> agrangian dynamics in <scp>GROMACS</scp> for polarizable simulations using the classical <scp>D</scp> rude oscillator model. Journal of Computational Chemistry, 2015, 36, 1473-1479.	1.5	79
117	Structure, force, and energy of a double-stranded DNA oligonucleotide under tensile loads. European Biophysics Journal, 1999, 28, 415-426.	1.2	78
118	The novel BH3 α-helix mimetic JY-1-106 induces apoptosis in a subset of cancer cells (lung cancer, colon) Tj ETQ Molecular Cancer, 2013, 12, 42.	q0 0 0 rgB 7.9	T /Overlock 1 78
119	Molecular dynamics simulations using the drude polarizable force field on GPUs with OpenMM: Implementation, validation, and benchmarks. Journal of Computational Chemistry, 2018, 39, 1682-1689.	1.5	77
120	Computational ligand-based rational design: role of conformational sampling and force fields in model development. MedChemComm, 2011, 2, 356.	3.5	76
121	Induction of Peptide Bond Dipoles Drives Cooperative Helix Formation in the (AAQAA)3 Peptide. Biophysical Journal, 2014, 107, 991-997.	0.2	76
122	Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field. Journal of Physical Chemistry B, 2014, 118, 6742-6757.	1.2	74
123	Computational evaluation of protein–small molecule binding. Current Opinion in Structural Biology, 2009, 19, 56-61.	2.6	73
124	Urea Destabilizes RNA by Forming Stacking Interactions and Multiple Hydrogen Bonds with Nucleic Acid Bases. Journal of the American Chemical Society, 2009, 131, 17759-17761.	6.6	73
125	Identification and Validation of Human DNA Ligase Inhibitors Using Computer-Aided Drug Design. Journal of Medicinal Chemistry, 2008, 51, 4553-4562.	2.9	71
126	Ab initio conformational analysis of nucleic acid components: Intrinsic energetic contributions to nucleic acid structure and dynamics. Biopolymers, 2001, 61, 61-76.	1.2	70

#	Article	IF	CITATIONS
127	Molecular Simulations of Dodecyl- \hat{I}^2 -maltoside Micelles in Water: Influence of the Headgroup Conformation and Force Field Parameters. Journal of Physical Chemistry B, 2011, 115, 487-499.	1.2	69
128	Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2014, 10, 2281-2290.	2.3	69
129	Polarizable Force Field for DNA Based on the Classical Drude Oscillator: II. Microsecond Molecular Dynamics Simulations of Duplex DNA. Journal of Chemical Theory and Computation, 2017, 13, 2072-2085.	2.3	69
130	Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics. Journal of Chemical Theory and Computation, 2017, 13, 2053-2071.	2.3	68
131	Smallâ€Molecule Inhibitors of the ERK Signaling Pathway: Towards Novel Anticancer Therapeutics. ChemMedChem, 2011, 6, 38-48.	1.6	67
132	Polarizable Empirical Force Field for Hexopyranose Monosaccharides Based on the Classical Drude Oscillator. Journal of Physical Chemistry B, 2015, 119, 637-652.	1.2	67
133	Polarizable force field for RNA based on the classical drude oscillator. Journal of Computational Chemistry, 2018, 39, 2624-2646.	1.5	67
134	Novel LRRK2 GTP-binding inhibitors reduced degeneration in Parkinson's disease cell and mouse models. Human Molecular Genetics, 2014, 23, 6212-6222.	1.4	66
135	Polarizable empirical force field for nitrogenâ€containing heteroaromatic compounds based on the classical Drude oscillator. Journal of Computational Chemistry, 2009, 30, 1821-1838.	1.5	65
136	Targeting NAD Biosynthesis in Bacterial Pathogens: Structure-Based Development of Inhibitors of Nicotinate Mononucleotide Adenylyltransferase NadD. Chemistry and Biology, 2009, 16, 849-861.	6.2	63
137	Additive <scp>CHARMM</scp> force field for naturally occurring modified ribonucleotides. Journal of Computational Chemistry, 2016, 37, 896-912.	1.5	63
138	Polarizability rescaling and atom-based Thole scaling in the CHARMM Drude polarizable force field for efield for ethers. Journal of Molecular Modeling, 2010, 16, 567-576.	0.8	62
139	Pharmacophore Modeling Using Site-Identification by Ligand Competitive Saturation (SILCS) with Multiple Probe Molecules. Journal of Chemical Information and Modeling, 2015, 55, 407-420.	2.5	62
140	2D Conformationally Sampled Pharmacophore: A Ligand-Based Pharmacophore To Differentiate δ Opioid Agonists from Antagonists. Journal of the American Chemical Society, 2003, 125, 3101-3107.	6.6	61
141	Identification of Non-Phosphate-Containing Small Molecular Weight Inhibitors of the Tyrosine Kinase p56 Lck SH2 Domain via in Silico Screening against the pY + 3 Binding Site. Journal of Medicinal Chemistry, 2004, 47, 3502-3511.	2.9	61
142	Characterization of ATP-independent ERK inhibitors identified through in silico analysis of the active ERK2 structure. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6281-6287.	1.0	61
143	Targeting of an Interrupted Polypurine:Polypyrimidine Sequence in Mammalian Cells by a Triplex-Forming Oligonucleotide Containing a Novel Base Analogue. Biochemistry, 2010, 49, 7867-7878.	1.2	60
144	The Small Molecule IMR-1 Inhibits the Notch Transcriptional Activation Complex to Suppress Tumorigenesis. Cancer Research, 2016, 76, 3593-3603.	0.4	60

#	Article	IF	CITATIONS
145	Induced Polarization Influences the Fundamental Forces in DNA Base Flipping. Journal of Physical Chemistry Letters, 2014, 5, 2077-2083.	2.1	59
146	Robustness in the fitting of molecular mechanics parameters. Journal of Computational Chemistry, 2015, 36, 1083-1101.	1.5	58
147	Cation-Ï€ Interactions between Methylated Ammonium Groups and Tryptophan in the CHARMM36 Additive Force Field. Journal of Chemical Theory and Computation, 2019, 15, 7-12.	2.3	58
148	Contribution of the Phosphodiester Backbone and Glycosyl Linkage Intrinsic Torsional Energetics to DNA Structure and Dynamics. Journal of Physical Chemistry B, 1999, 103, 10955-10964.	1.2	57
149	Relaxation of the rigid backbone of an oligoamide-foldamer-based α-helix mimetic: identification of potent Bcl-xL inhibitors. Organic and Biomolecular Chemistry, 2012, 10, 2928.	1.5	57
150	Altered structural fluctuations in duplex RNA versus DNA: a conformational switch involving base pair opening. Nucleic Acids Research, 2003, 31, 7131-7140.	6.5	56
151	Influence of Solvent and Intramolecular Hydrogen Bonding on the Conformational Properties of O-Linked Glycopeptides. Journal of Physical Chemistry B, 2011, 115, 11215-11229.	1.2	56
152	Site-Identification by Ligand Competitive Saturation (SILCS) assisted pharmacophore modeling. Journal of Computer-Aided Molecular Design, 2014, 28, 491-507.	1.3	56
153	Role of the Adenine Ligand on the Stabilization of the Secondary and Tertiary Interactions in the Adenine Riboswitch. Journal of Molecular Biology, 2010, 396, 1422-1438.	2.0	55
154	Ribosome-Templated Azide–Alkyne Cycloadditions: Synthesis of Potent Macrolide Antibiotics by In Situ Click Chemistry. Journal of the American Chemical Society, 2016, 138, 3136-3144.	6.6	55
155	Chapter 1 Considerations for Lipid Force Field Development. Current Topics in Membranes, 2008, , 1-48.	0.5	54
156	Conformationally Sampled Pharmacophore for Peptidic δ Opioid Ligands. Journal of Medicinal Chemistry, 2005, 48, 7773-7780.	2.9	53
157	Divalent Metal Ion Complexes of S100B in the Absence and Presence of Pentamidine. Journal of Molecular Biology, 2008, 382, 56-73.	2.0	53
158	Atomistic Simulation Study of Linear Alkylbenzene Sulfonates at the Water/Air Interface. Journal of Physical Chemistry B, 2010, 114, 9787-9794.	1.2	53
159	Further Optimization and Validation of the Classical Drude Polarizable Protein Force Field. Journal of Chemical Theory and Computation, 2020, 16, 3221-3239.	2.3	53
160	Binding Response:  A Descriptor for Selecting Ligand Binding Site on Protein Surfaces. Journal of Chemical Information and Modeling, 2007, 47, 2303-2315.	2.5	52
161	Iodobenzene-Catalyzed Synthesis of Phenanthridinones via Oxidative C–H Amidation. Journal of Organic Chemistry, 2017, 82, 3589-3596.	1.7	52
162	Use of Oligodeoxyribonucleotides with Conformationally Constrained Abasic Sugar Targets To Probe the Mechanism of Base Flipping byHhal DNA (Cytosine C5)-methyltransferase. Journal of the American Chemical Society, 2000, 122, 12422-12434.	6.6	51

#	Article	IF	CITATIONS
163	Differential Impact of the Monovalent Ions Li ⁺ , Na ⁺ , K ⁺ , and Rb ⁺ on DNA Conformational Properties. Journal of Physical Chemistry Letters, 2015, 6, 212-216.	2.1	51
164	Influence of Conformation on the EPR Spectrum of 5,5-Dimethyl-1-hydroperoxy-1-pyrrolidinyloxyl:Â A Spin Trapped Adduct of Superoxide. Journal of Organic Chemistry, 2004, 69, 1321-1330.	1.7	50
165	Polarizable Empirical Force Field for Acyclic Polyalcohols Based on the Classical Drude Oscillator. Biopolymers, 2013, 99, 724-738.	1.2	50
166	Turning Defense into Offense: Defensin Mimetics as Novel Antibiotics Targeting Lipid II. PLoS Pathogens, 2013, 9, e1003732.	2.1	50
167	Conformational Properties of α- or β-(1→6)-Linked Oligosaccharides: Hamiltonian Replica Exchange MD Simulations and NMR Experiments. Journal of Physical Chemistry B, 2014, 118, 2851-2871.	1.2	50
168	FFParam: Standalone package for CHARMM additive and Drude polarizable force field parametrization of small molecules. Journal of Computational Chemistry, 2020, 41, 958-970.	1.5	50
169	Molecular dynamics simulations of ribonuclease T1: analysis of the effect of solvent on the structure, fluctuations, and active site of the free enzyme. Biochemistry, 1988, 27, 4547-4556.	1.2	49
170	An ab Initio Quantum Mechanical Study of Hydrogen-Bonded Complexes of Biological Interest. Journal of Physical Chemistry A, 2002, 106, 7820-7827.	1.1	49
171	CHARMM force field parameters for simulation of reactive intermediates in native and thio-substituted ribozymes. Journal of Computational Chemistry, 2007, 28, 495-507.	1.5	49
172	Comparing Simulated and Experimental Translation and Rotation Constants: Range of Validity for Viscosity Scaling. Journal of Physical Chemistry B, 2010, 114, 12501-12507.	1.2	49
173	(â^')-3β-Substituted Ecgonine Methyl Esters as Inhibitors for Cocaine Binding and Dopamine Uptake. Journal of Medicinal Chemistry, 1998, 41, 864-876.	2.9	48
174	Ab Initio Modeling of Glycosyl Torsions and Anomeric Effects in a Model Carbohydrate: 2-Ethoxy Tetrahydropyran. Biophysical Journal, 2007, 93, 1-10.	0.2	48
175	Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8091-8096.	3.3	48
176	Mapping Functional Group Free Energy Patterns at Protein Occluded Sites: Nuclear Receptors and G-Protein Coupled Receptors. Journal of Chemical Information and Modeling, 2015, 55, 700-708.	2.5	48
177	Ab InitioCalculations on the Use of Helium and Neon as Probes of the van der Waals Surfaces of Molecules. The Journal of Physical Chemistry, 1996, 100, 2588-2596.	2.9	47
178	Base Flipping in a GCGC Containing DNA Dodecamer:  A Comparative Study of the Performance of the Nucleic Acid Force Fields, CHARMM, AMBER, and BMS. Journal of Chemical Theory and Computation, 2006, 2, 187-200.	2.3	47
179	Optimization and Evaluation of Site-Identification by Ligand Competitive Saturation (SILCS) as a Tool for Target-Based Ligand Optimization. Journal of Chemical Information and Modeling, 2019, 59, 3018-3035.	2.5	47
180	Structural Characterization of the Phosphotyrosine Binding Region of a High-Affinity SH2 Domainâ~Phosphopeptide Complex by Molecular Dynamics Simulation and Chemical Shift Calculations. Journal of the American Chemical Society, 1996, 118, 11265-11277.	6.6	46

#	Article	IF	CITATIONS
181	Conformational Properties of Methyl β-Maltoside and Methyl α- and β-Cellobioside Disaccharides. Journal of Physical Chemistry B, 2011, 115, 597-608.	1.2	46
182	Protein dynamics. Biophysical Chemistry, 1987, 26, 247-261.	1.5	45
183	Polarizable empirical force field for sulfurâ€containing compounds based on the classical Drude oscillator model. Journal of Computational Chemistry, 2010, 31, 2330-2341.	1.5	45
184	Unusual sequence effects on nucleotide excision repair of arylamine lesions: DNA bending/distortion as a primary recognition factor. Nucleic Acids Research, 2013, 41, 869-880.	6.5	45
185	Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator. Journal of Chemical Information and Modeling, 2018, 58, 993-1004.	2.5	45
186	Development of a glycoconjugate vaccine to prevent invasive Salmonella Typhimurium infections in sub-Saharan Africa. PLoS Neglected Tropical Diseases, 2017, 11, e0005493.	1.3	44
187	Optimized Lennard-Jones Parameters for Druglike Small Molecules. Journal of Chemical Theory and Computation, 2018, 14, 3121-3131.	2.3	44
188	Caught in the act: visualization of an intermediate in the DNA base-flipping pathway induced by Hhal methyltransferase. Nucleic Acids Research, 2004, 32, 3877-3886.	6.5	43
189	Computation of the influence of chemical substitution on the p K a of pyridine using semiempirical and ab initio methods. Theoretical Chemistry Accounts, 2000, 103, 483-494.	0.5	42
190	Synthesis, Modeling, and Pharmacological Evaluation of UMB 425, a Mixed μ Agonist/δAntagonist Opioid Analgesic with Reduced Tolerance Liabilities. ACS Chemical Neuroscience, 2013, 4, 1256-1266.	1.7	42
191	Structure-based design of N-substituted 1-hydroxy-4-sulfamoyl-2-naphthoates as selective inhibitors of the Mcl-1 oncoprotein. European Journal of Medicinal Chemistry, 2016, 113, 273-292.	2.6	42
192	Mapping the Drude polarizable force field onto a multipole and induced dipole model. Journal of Chemical Physics, 2017, 147, 161702.	1.2	42
193	Amphipathic α-Helix Mimetics Based on a 1,2-Diphenylacetylene Scaffold. Organic Letters, 2013, 15, 3234-3237.	2.4	41
194	Targeting Protein Tyrosine Phosphatase SHP2 for the Treatment of <i>PTPN11</i> -Associated Malignancies. Molecular Cancer Therapeutics, 2013, 12, 1738-1748.	1.9	41
195	Lipopolysaccharide Membrane Building and Simulation. Methods in Molecular Biology, 2015, 1273, 391-406.	0.4	41
196	Characterization of Mg ²⁺ Distributions around RNA in Solution. ACS Omega, 2016, 1, 680-688.	1.6	40
197	Atomistic view of base flipping in DNA. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 1439-1460.	1.6	39
198	Identification of Small Molecular Weight Inhibitors of Src Homology 2 Domain-Containing Tyrosine Phosphatase 2 (SHP-2) via in Silico Database Screening Combined with Experimental Assay. Journal of Medicinal Chemistry, 2008, 51, 7396-7404.	2.9	39

#	Article	IF	CITATIONS
199	CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides. Journal of Physical Chemistry B, 2015, 119, 7846-7859.	1.2	39
200	Improving the Force Field Description of Tyrosine–Choline Cationâ~'Ï€ Interactions: QM Investigation of Phenol–N(Me) ₄ ⁺ Interactions. Journal of Chemical Theory and Computation, 2016, 12, 5585-5595.	2.3	39
201	An activating mutation of the NSD2 histone methyltransferase drives oncogenic reprogramming in acute lymphocytic leukemia. Oncogene, 2019, 38, 671-686.	2.6	39
202	Semi-automated Optimization of the CHARMM36 Lipid Force Field to Include Explicit Treatment of Long-Range Dispersion. Journal of Chemical Theory and Computation, 2021, 17, 1562-1580.	2.3	39
203	Additive CHARMM36 Force Field for Nonstandard Amino Acids. Journal of Chemical Theory and Computation, 2021, 17, 3554-3570.	2.3	39
204	Identification of HIV-1 integrase inhibitors via three-dimensional database searching using ASV and HIV-1 integrases as targets. Bioorganic and Medicinal Chemistry, 2000, 8, 2385-2398.	1.4	38
205	NMR Imino Proton Exchange Experiments on Duplex DNA Primarily Monitor the Opening of Purine Bases. Journal of the American Chemical Society, 2006, 128, 678-679.	6.6	38
206	Inhibition of the Bacterial Heme Oxygenases from <i>Pseudomonas aeruginosa</i> and <i>Neisseria meningitidis</i> :  Novel Antimicrobial Targets. Journal of Medicinal Chemistry, 2007, 50, 3804-3813.	2.9	38
207	Conformational Sampling of Oligosaccharides Using Hamiltonian Replica Exchange with Two-Dimensional Dihedral Biasing Potentials and the Weighted Histogram Analysis Method (WHAM). Journal of Chemical Theory and Computation, 2015, 11, 788-799.	2.3	38
208	Polarizable Empirical Force Field for Halogen-Containing Compounds Based on the Classical Drude Oscillator. Journal of Chemical Theory and Computation, 2018, 14, 1083-1098.	2.3	38
209	Proton and Hydride Transfers in Solution:Â Hybrid QM/MM Free Energy Perturbation Study. The Journal of Physical Chemistry, 1996, 100, 4466-4475.	2.9	37
210	Structural mechanism associated with domain opening in gainâ€ofâ€function mutations in SHP2 phosphatase. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1573-1588.	1.5	37
211	Balancing the Interactions of Mg ²⁺ in Aqueous Solution and with Nucleic Acid Moieties For a Polarizable Force Field Based on the Classical Drude Oscillator Model. Journal of Physical Chemistry B, 2016, 120, 11436-11448.	1.2	37
212	Site Identification by Ligand Competitive Saturation (SILCS) Simulations for Fragment-Based Drug Design. Methods in Molecular Biology, 2015, 1289, 75-87.	0.4	37
213	Reevaluation of Stereoelectronic Contributions to the Conformational Properties of the Phosphodiester and N3â€ ⁻ Phosphoramidate Moieties of Nucleic Acids. Journal of the American Chemical Society, 2001, 123, 6747-6755.	6.6	36
214	Quantitative Conformationally Sampled Pharmacophore for δ Opioid Ligands: Reevaluation of Hydrophobic Moieties Essential for Biological Activity. Journal of Medicinal Chemistry, 2007, 50, 1799-1809.	2.9	36
215	Holo-Ni(II)HpNikR Is an Asymmetric Tetramer Containing Two Different Nickel-Binding Sites. Journal of the American Chemical Society, 2010, 132, 14447-14456.	6.6	36
216	Balancing target flexibility and target denaturation in computational fragmentâ€based inhibitor discovery. Journal of Computational Chemistry, 2012, 33, 1880-1891.	1.5	36

#	Article	IF	CITATIONS
217	Human mitochondrial aldehyde dehydrogenase inhibition by diethyldithiocarbamic acid methanethiol mixed disulfide: a derivative of disulfiram. FEBS Letters, 1985, 179, 77-81.	1.3	35
218	Design of Inhibitors for S100B. Current Topics in Medicinal Chemistry, 2005, 5, 1093-1108.	1.0	35
219	Characterization of ERK Docking Domain Inhibitors that Induce Apoptosis by Targeting Rsk-1 and Caspase-9. BMC Cancer, 2011, 11, 7.	1.1	35
220	Enhanced Conformational Sampling Using Replica Exchange with Concurrent Solute Scaling and Hamiltonian Biasing Realized in One Dimension. Journal of Chemical Theory and Computation, 2015, 11, 2855-2867.	2.3	35
221	Small-molecule inhibitors of ERK-mediated immediate early gene expression and proliferation of melanoma cells expressing mutated BRaf. Biochemical Journal, 2015, 467, 425-438.	1.7	35
222	ldentification of Thiourea-Based Inhibitors of the B-Cell Lymphoma 6 BTB Domain via NMR-Based Fragment Screening and Computer-Aided Drug Design. Journal of Medicinal Chemistry, 2018, 61, 7573-7588.	2.9	35
223	Molecular dynamics simulations of ribonuclease T1: Comparison of the free enzyme and $2\hat{a} \in 2$ GMP-enzyme complex. Proteins: Structure, Function and Bioinformatics, 1989, 6, 20-31.	1.5	34
224	Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129519.	1.1	34
225	Specificity in Protein–DNA Interactions: Energetic Recognition by the (Cytosine-C5)-methyltransferase from Hhal. Journal of Molecular Biology, 2005, 345, 265-274.	2.0	33
226	Small Molecules Bound to Unique Sites in the Target Protein Binding Cleft of Calcium-Bound S100B As Characterized by Nuclear Magnetic Resonance and X-ray Crystallography. Biochemistry, 2009, 48, 6202-6212.	1.2	33
227	Iminoguanidines as Allosteric Inhibitors of the Iron-Regulated Heme Oxygenase (HemO) of <i>Pseudomonas aeruginosa</i> . Journal of Medicinal Chemistry, 2016, 59, 6929-6942.	2.9	33
228	Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations. Physical Chemistry Chemical Physics, 2016, 18, 18776-18794.	1.3	33
229	RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget, 2015, 6, 28132-28150.	0.8	33
230	Molecular modeling and dynamics of neuropeptide Y. Journal of Computer-Aided Molecular Design, 1988, 2, 55-63.	1.3	32
231	Structure-Based Inhibitor Design Targeting HIV-1 Integrase. Current Drug Targets Infectious Disorders, 2002, 2, 217-234.	2.1	32
232	Perturbation of Long-Range Water Dynamics as the Mechanism for the Antifreeze Activity of Antifreeze Glycoprotein. Journal of Physical Chemistry B, 2014, 118, 11696-11706.	1.2	32
233	Conformational Heterogeneity of the HIV Envelope Glycan Shield. Scientific Reports, 2017, 7, 4435.	1.6	32
234	Kirkwood-Buff analysis of aqueous N-methylacetamide and acetamide solutions modeled by the CHARMM additive and Drude polarizable force fields. Journal of Chemical Physics, 2013, 139, 084509.	1.2	31

#	Article	IF	CITATIONS
235	Novel Noncatalytic Substrate-Selective p38α-Specific MAPK Inhibitors with Endothelial-Stabilizing and Anti-Inflammatory Activity. Journal of Immunology, 2017, 198, 3296-3306.	0.4	31
236	Analysis of structure-function relationships of neuropeptide Y using molecular dynamics simulations and pharmacological activity and binding measurements. Regulatory Peptides, 1989, 25, 295-313.	1.9	30
237	Quantum Mechanical Analysis of 1,2-Ethanediol Conformational Energetics and Hydrogen Bonding. Journal of Physical Chemistry A, 2006, 110, 9934-9939.	1.1	30
238	Development of Extracellular Signal-Regulated Kinase Inhibitors. Current Topics in Medicinal Chemistry, 2009, 9, 678-689.	1.0	30
239	Contribution of the Intrinsic Mechanical Energy of the Phosphodiester Linkage to the Relative Stability of the A, B _I , and B _{II} Forms of Duplex DNA. Journal of Physical Chemistry B, 2009, 113, 3235-3244.	1.2	30
240	Site-Specific Fragment Identification Guided by Single-Step Free Energy Perturbation Calculations. Journal of Chemical Theory and Computation, 2012, 8, 3513-3525.	2.3	30
241	Induced Dipole–Dipole Interactions Influence the Unfolding Pathways of Wild-Type and Mutant Amyloid β-Peptides. Journal of Physical Chemistry B, 2015, 119, 15574-15582.	1.2	30
242	Bromoacetophenone as an affinity reagent for human liver aldehyde dehydrogenase. Biochemistry, 1986, 25, 5182-5189.	1.2	29
243	Importance of Domain Closure for the Autoactivation of ERK2. Biochemistry, 2011, 50, 8038-8048.	1.2	29
244	Intrinsic Contribution of the 2′-Hydroxyl to RNA Conformational Heterogeneity. Journal of the American Chemical Society, 2012, 134, 2800-2806.	6.6	29
245	Structural modifications of (Z)-3-(2-aminoethyl)-5-(4-ethoxybenzylidene)thiazolidine-2,4-dione that improve selectivity for inhibiting the proliferation of melanoma cells containing active ERK signaling. Organic and Biomolecular Chemistry, 2013, 11, 3706.	1.5	29
246	CHARMM Drude Polarizable Force Field for Glycosidic Linkages Involving Pyranoses and Furanoses. Journal of Chemical Theory and Computation, 2018, 14, 3132-3143.	2.3	29
247	A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes. Molecules, 2018, 23, 2695.	1.7	29
248	Force Fields for Small Molecules. Methods in Molecular Biology, 2019, 2022, 21-54.	0.4	29
249	Molecular Details of the Activation of the \hat{l} ¹ /4 Opioid Receptor. Journal of Physical Chemistry B, 2013, 117, 7907-7917.	1.2	28
250	Structure and Dynamics of FosA-Mediated Fosfomycin Resistance in Klebsiella pneumoniae and Escherichia coli. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	28
251	Complexes of Bacterial Nicotinate Mononucleotide Adenylyltransferase with Inhibitors: Implication for Structure-Based Drug Design and Improvement. Journal of Medicinal Chemistry, 2010, 53, 5229-5239.	2.9	27
252	Protonation of trimethylamine N-oxide (TMAO) is required for stabilization of RNA tertiary structure. Biophysical Chemistry, 2013, 184, 8-16.	1.5	27

#	Article	IF	CITATIONS
253	Small Molecule Antivirulents Targeting the Iron-Regulated Heme Oxygenase (HemO) of <i>P. aeruginosa</i> . Journal of Medicinal Chemistry, 2013, 56, 2097-2109.	2.9	27
254	Improved Modeling of Cationâ€i€ and Anionâ€Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins. Journal of Computational Chemistry, 2020, 41, 439-448.	1.5	27
255	Inhibition Requirements of the Human Apical Sodium-Dependent Bile Acid Transporter (hASBT) Using Aminopiperidine Conjugates of glutamyl-Bile Acids. Pharmaceutical Research, 2009, 26, 1665-1678.	1.7	26
256	Differential Deformability of the DNA Minor Groove and Altered BI/BII Backbone Conformational Equilibrium by the Monovalent Ions Li ⁺ , Na ⁺ , K ⁺ , and Rb ⁺ via Water-Mediated Hydrogen Bonding. Journal of Chemical Theory and Computation, 2015, 11, 4473-4485.	2.3	26
257	Estimation of relative free energies of binding using preâ€computed ensembles based on the singleâ€step free energy perturbation and the siteâ€identification by Ligand competitive saturation approaches. Journal of Computational Chemistry, 2017, 38, 1238-1251.	1.5	26
258	Polarization Effects in Water-Mediated Selective Cation Transport across a Narrow Transmembrane Channel. Journal of Chemical Theory and Computation, 2021, 17, 1726-1741.	2.3	26
259	Molecular Dynamics Simulations of Glycoproteins Using CHARMM. Methods in Molecular Biology, 2015, 1273, 407-429.	0.4	26
260	Fundamental, Binary Combination, and Overtone Modes in Methoxy Adsorbed on Cu(100):Â Infrared Spectroscopy and Ab Initio Calculations. Journal of Physical Chemistry B, 2002, 106, 5200-5211.	1.2	25
261	A Search for Inhibitors of S100B, a Member of the S100 Family of Calcium-Binding Proteins. Mini-Reviews in Medicinal Chemistry, 2007, 7, 609-616.	1.1	25
262	Desmethyl Macrolides: Synthesis and Evaluation of 4,8,10-Tridesmethyl Telithromycin. ACS Medicinal Chemistry Letters, 2011, 2, 68-72.	1.3	25
263	A Comparative Study of Transferable Aspherical Pseudoatom Databank and Classical Force Fields for Predicting Electrostatic Interactions in Molecular Dimers. Journal of Chemical Theory and Computation, 2014, 10, 1652-1664.	2.3	25
264	Molecular recognition of aldehydes by aldehyde dehydrogenase and mechanism of nucleophile activation. Proteins: Structure, Function and Bioinformatics, 2004, 57, 758-771.	1.5	24
265	Cooperative binding of DNA and CBFÂ to the Runt domain of the CBFÂ studied via MD simulations. Nucleic Acids Research, 2005, 33, 4212-4222.	6.5	24
266	Conformational Determinants of Tandem GU Mismatches in RNA:  Insights from Molecular Dynamics Simulations and Quantum Mechanical Calculations. Biochemistry, 2005, 44, 1433-1443.	1.2	24
267	<scp>CHARMMâ€GUI</scp> Drude prepper for molecular dynamics simulation using the classical Drude polarizable force field. Journal of Computational Chemistry, 2022, 43, 359-375.	1.5	24
268	Molecular Switch Controlling the Binding of Anionic Bile Acid Conjugates to Human Apical Sodium-Dependent Bile Acid Transporter. Journal of Medicinal Chemistry, 2010, 53, 4749-4760.	2.9	23
269	Automated Selection of Compounds with Physicochemical Properties To Maximize Bioavailability and Druglikeness. Journal of Chemical Information and Modeling, 2011, 51, 148-158.	2.5	23
270	Classical Drude Polarizable Force Field Model for Methyl Phosphate and Its Interactions with Mg ²⁺ . Journal of Physical Chemistry A, 2018, 122, 6147-6155.	1.1	23

#	Article	IF	CITATIONS
271	Improved Modeling of Halogenated Ligand–Protein Interactions Using the Drude Polarizable and CHARMM Additive Empirical Force Fields. Journal of Chemical Information and Modeling, 2019, 59, 215-228.	2.5	23
272	Structure of the cell-binding component of the <i>Clostridium difficile</i> binary toxin reveals a di-heptamer macromolecular assembly. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1049-1058.	3.3	23
273	Lead Validation and SAR Development via Chemical Similarity Searching; Application to Compounds Targeting the pY+3 Site of the SH2 Domain of p56lck. Journal of Chemical Information and Modeling, 2005, 45, 1759-1766.	2.5	22
274	Structural Determinants for Transport across the Intestinal Bile Acid Transporter Using C-24 Bile Acid Conjugates. Molecular Pharmaceutics, 2010, 7, 2240-2254.	2.3	22
275	Desmethyl Macrolides: Synthesis and Evaluation of 4,10-Didesmethyl Telithromycin. ACS Medicinal Chemistry Letters, 2012, 3, 211-215.	1.3	22
276	The SKI complex is a broad-spectrum, host-directed antiviral drug target for coronaviruses, influenza, and filoviruses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30687-30698.	3.3	22
277	INHIBITION OF (CYTOSINE C5)-METHYLTRANSFERASE BY OLIGONUCLEOTIDES CONTAINING FLEXIBLE (CYCLOPENTANE) AND CONFORMATIONALLY CONSTRAINED (BICYCLO[3.1.0]HEXANE) ABASIC SITES. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 451-459.	0.4	21
278	Chapter 7 Empirical Force Fields for Proteins: Current Status and Future Directions. Annual Reports in Computational Chemistry, 2005, 1, 91-102.	0.9	21
279	Consensus 3D Model of μ-Opioid Receptor Ligand Efficacy Based on a Quantitative Conformationally Sampled Pharmacophore. Journal of Physical Chemistry B, 2011, 115, 7487-7496.	1.2	21
280	Structure-Based Discovery of a Novel Pentamidine-Related Inhibitor of the Calcium-Binding Protein S100B. ACS Medicinal Chemistry Letters, 2012, 3, 975-979.	1.3	21
281	Desmethyl Macrolides: Synthesis and Evaluation of 4,8,10-Tridesmethyl Cethromycin. ACS Medicinal Chemistry Letters, 2013, 4, 1114-1118.	1.3	21
282	Lipid-Linked Oligosaccharides in Membranes Sample Conformations That Facilitate Binding to Oligosaccharyltransferase. Biophysical Journal, 2014, 107, 1885-1895.	0.2	21
283	Facile Synthesis of Spirocyclic Lactams from β-Keto Carboxylic Acids. Organic Letters, 2015, 17, 3070-3073.	2.4	21
284	Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein–Ligand Binding: Binding Site Variability. Journal of the American Chemical Society, 2015, 137, 2608-2621.	6.6	21
285	Acyl-2-aminobenzimidazoles: A novel class of neuroprotective agents targeting mGluR5. Bioorganic and Medicinal Chemistry, 2015, 23, 2211-2220.	1.4	21
286	Toward Prediction of Electrostatic Parameters for Force Fields That Explicitly Treat Electronic Polarization. Journal of Chemical Theory and Computation, 2019, 15, 2460-2469.	2.3	21
287	Exploring proteinâ€protein interactions using the siteâ€identification by ligand competitive saturation methodology. Proteins: Structure, Function and Bioinformatics, 2019, 87, 289-301.	1.5	21
288	Profiling the Tox21 Chemical Collection for Acetylcholinesterase Inhibition. Environmental Health Perspectives, 2021, 129, 47008.	2.8	21

#	Article	IF	CITATIONS
289	TIT for TAT: The Properties of Inosine and Adenosine in TATA Box DNA. Journal of Biomolecular Structure and Dynamics, 1999, 16, 787-810.	2.0	20
290	Impact of Arsenic/Phosphorus Substitution on the Intrinsic Conformational Properties of the Phosphodiester Backbone of DNA Investigated Using ab Initio Quantum Mechanical Calculations. Journal of the American Chemical Society, 2011, 133, 5770-5772.	6.6	20
291	Drude Polarizable Force Field Parametrization of Carboxylate and <i>N</i> -Acetyl Amine Carbohydrate Derivatives. Journal of Chemical Theory and Computation, 2019, 15, 4982-5000.	2.3	20
292	Prediction of Membrane Permeation of Drug Molecules by Combining an Implicit Membrane Model with Machine Learning. Journal of Chemical Information and Modeling, 2019, 59, 1147-1162.	2.5	20
293	Computational Characterization of Antibody–Excipient Interactions for Rational Excipient Selection Using the Site Identification by Ligand Competitive Saturation-Biologics Approach. Molecular Pharmaceutics, 2020, 17, 4323-4333.	2.3	20
294	Atomic Detail Investigation of the Structure and Dynamics of DNA•RNA Hybrids:  A Molecular Dynamics Study. Journal of Physical Chemistry B, 2008, 112, 1515-1524.	1.2	19
295	Intrinsic Energy Landscapes of Amino Acid Side-Chains. Journal of Chemical Information and Modeling, 2012, 52, 1559-1572.	2.5	19
296	Rapid estimation of hydration thermodynamics of macromolecular regions. Journal of Chemical Physics, 2013, 139, 055105.	1.2	19
297	Estimating glycosaminoglycan–protein interaction affinity: water dominates the specific antithrombin–heparin interaction. Glycobiology, 2016, 26, 1041-1047.	1.3	19
298	An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches. Journal of Chemical Theory and Computation, 2017, 13, 679-695.	2.3	19
299	Discovery of beta-lactamase CMY-10 inhibitors for combination therapy against multi-drug resistant Enterobacteriaceae. PLoS ONE, 2021, 16, e0244967.	1.1	19
300	Position of Coordination of the Lithium Ion Determines the Regioselectivity of Demethylations of 3,4-Dimethoxymorphinans with L-Selectride. Organic Letters, 2005, 7, 2531-2534.	2.4	18
301	Mitogen Activated Protein (MAP) Kinases: Development of ATP and Non- ATP Dependent Inhibitors. Medicinal Chemistry, 2006, 2, 213-222.	0.7	18
302	Regulation of RUNX2 transcription factor–DNA interactions and cell proliferation by vitamin D3 (cholecalciferol) prohormone activity. Journal of Bone and Mineral Research, 2012, 27, 913-925.	3.1	18
303	Impact of Ribosomal Modification on the Binding of the Antibiotic Telithromycin Using a Combined Grand Canonical Monte Carlo/Molecular Dynamics Simulation Approach. PLoS Computational Biology, 2013, 9, e1003113.	1.5	18
304	Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein. Biophysical Journal, 2015, 109, 2090-2100.	0.2	18
305	Structure of Penta-Alanine Investigated by Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2016, 120, 5325-5339.	1.2	18
306	Rapid and accurate estimation of protein–ligand relative binding affinities using site-identification by ligand competitive saturation. Chemical Science, 2021, 12, 8844-8858.	3.7	18

#	Article	IF	CITATIONS
307	Computational Model for Predicting Chemical Substituent Effects on Passive Drug Permeability across Parallel Artificial Membranes. Molecular Pharmaceutics, 2008, 5, 818-828.	2.3	17
308	Reconstruction of the (011) surface on αâ€quartz: A semiclassical <i>Ab initio</i> molecular dynamics study. International Journal of Quantum Chemistry, 2009, 109, 50-64.	1.0	17
309	Comprehensive Conformational Studies of Five Tripeptides and a Deduced Method for Efficient Determinations of Peptide Structures. Journal of Physical Chemistry B, 2012, 116, 2269-2283.	1.2	17
310	Determination of Ionic Hydration Free Energies with Grand Canonical Monte Carlo/Molecular Dynamics Simulations in Explicit Water. Journal of Chemical Theory and Computation, 2018, 14, 5290-5302.	2.3	17
311	Site-Selective Chemoenzymatic Modification on the Core Fucose of an Antibody Enhances Its Fcγ Receptor Affinity and ADCC Activity. Journal of the American Chemical Society, 2021, 143, 7828-7838.	6.6	17
312	Harnessing Deep Learning for Optimization of Lennard-Jones Parameters for the Polarizable Classical Drude Oscillator Force Field. Journal of Chemical Theory and Computation, 2022, 18, 2388-2407.	2.3	17
313	Using Molecular Dynamics Simulations To Provide New Insights into Protein Structure on the Nanosecond Timescale:  Comparison with Experimental Data and Biological Inferences for the Hyaluronan-Binding Link Module of TSG-6. Journal of Chemical Theory and Computation, 2007, 3, 1-16.	2.3	16
314	Targeting Zymogen Activation To Control the Matriptase-Prostasin Proteolytic Cascade. Journal of Medicinal Chemistry, 2011, 54, 7567-7578.	2.9	16
315	Desmethyl Macrolides: Synthesis and Evaluation of 4,8-Didesmethyl Telithromycin. ACS Medicinal Chemistry Letters, 2012, 3, 1013-1018.	1.3	16
316	Boc-protected 1-(3-oxocycloalkyl)ureas via a one-step Curtius rearrangement: mechanism and scope. Tetrahedron Letters, 2014, 55, 842-844.	0.7	16
317	Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields. Journal of Physical Chemistry B, 2015, 119, 7902-7910.	1.2	16
318	Dispersion Interactions between Urea and Nucleobases Contribute to the Destabilization of RNA by Urea in Aqueous Solution. Journal of Physical Chemistry B, 2015, 119, 3755-3761.	1.2	16
319	Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates. Journal of Computer-Aided Molecular Design, 2017, 31, 349-363.	1.3	16
320	Proper balance of solvent-solute and solute-solute interactions in the treatment of the diffusion of glucose using the Drude polarizable force field. Carbohydrate Research, 2018, 457, 41-50.	1.1	16
321	Second harmonic generation detection of Ras conformational changes and discovery of a small molecule binder. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17290-17297.	3.3	16
322	Impact of electronic polarizability on protein-functional group interactions. Physical Chemistry Chemical Physics, 2020, 22, 6848-6860.	1.3	16
323	Progress toward B-Cell Lymphoma 6 BTB Domain Inhibitors for the Treatment of Diffuse Large B-Cell Lymphoma and Beyond. Journal of Medicinal Chemistry, 2021, 64, 4333-4358.	2.9	16
324	Surface-induced alteration of adsorbate electronic structure and intramolecular vibrational coupling: The vibrational spectrum of 2-propoxide on Mo(110) as determined byab initiocalculations and experiments. Physical Review B, 1995, 51, 7844-7848.	1.1	15

#	Article	IF	CITATIONS
325	Calculation of the Vibrational Stark Effect Using a First-Principles Quantum Mechanical/Molecular Mechanical Approach. Journal of Physical Chemistry Letters, 2011, 2, 553-556.	2.1	15
326	Electrostatic Interactions Mediate Binding of Obscurin to Small Ankyrin 1: Biochemical and Molecular Modeling Studies. Journal of Molecular Biology, 2011, 408, 321-334.	2.0	15
327	Characterization of Conformational Ensembles of Protonated N-glycans in the Gas-Phase. Scientific Reports, 2018, 8, 1644.	1.6	15
328	Combining the polarizable Drude force field with a continuum electrostatic Poisson–Boltzmann implicit solvation model. Journal of Computational Chemistry, 2018, 39, 1707-1719.	1.5	15
329	Direct Comparisons of Experimental and Calculated Neutron Structure Factors of Pure Solvents as a Method for Force Field Validation. Journal of Physical Chemistry B, 2007, 111, 12941-12944.	1.2	14
330	pKa Calculations with the Polarizable Drude Force Field and Poisson–Boltzmann Solvation Model. Journal of Chemical Theory and Computation, 2020, 16, 4655-4668.	2.3	14
331	Chemical modification of human aldehyde dehydrogenase by physiological substrate. BBA - Proteins and Proteomics, 1987, 911, 306-317.	2.1	13
332	Tyr66 acts as a conformational switch in the closed-to-open transition of the SHP-2 N-SH2-domain phosphotyrosine-peptide binding cleft. BMC Structural Biology, 2007, 7, 14.	2.3	13
333	CHARMM Additive All-Atom Force Field for Acyclic Carbohydrates and Inositol. Journal of Chemical Theory and Computation, 2008, 4, 765-778.	2.3	13
334	Re-Evaluation of the Reported Experimental Values of the Heat of Vaporization of N-Methylacetamide. Journal of Chemical Theory and Computation, 2008, 4, 1307-1312.	2.3	13
335	A Comparative Kirkwood-Buff Study of Aqueous Methanol Solutions Modeled by the CHARMM Additive and Drude Polarizable Force Fields. Journal of Physical Chemistry B, 2013, 117, 10572-10580.	1.2	13
336	Conformational Determinants of the Activity of Antiproliferative Factor Glycopeptide. Journal of Chemical Information and Modeling, 2013, 53, 1127-1137.	2.5	13
337	Structure and Thermodynamic Insights on Acetylaminofluorene-Modified Deletion DNA Duplexes as Models for Frameshift Mutagenesis. Chemical Research in Toxicology, 2013, 26, 937-951.	1.7	13
338	Desmethyl Macrolides: Synthesis and Evaluation of 4-Desmethyl Telithromycin. ACS Medicinal Chemistry Letters, 2014, 5, 1021-1026.	1.3	13
339	<scp>DIRECTâ€ID</scp> : An automated method to identify and quantify conformational variations—application to l² ₂ â€adrenergic <scp>GPCR</scp> . Journal of Computational Chemistry, 2016, 37, 416-425.	1.5	13
340	Small Molecule Inhibitors of Ca ²⁺ -S100B Reveal Two Protein Conformations. Journal of Medicinal Chemistry, 2016, 59, 592-608.	2.9	13
341	Assessing hERG1 Blockade from Bayesian Machine-Learning-Optimized Site Identification by Ligand Competitive Saturation Simulations. Journal of Chemical Information and Modeling, 2020, 60, 6489-6501.	2.5	13
342	Deep Neural Network Model to Predict the Electrostatic Parameters in the Polarizable Classical Drude Oscillator Force Field. Journal of Chemical Theory and Computation, 2022, 18, 1711-1725.	2.3	13

#	Article	IF	CITATIONS
343	Binary combination and overtone modes in the C–H stretch region in ethoxy adsorbed on Cu(100): Experimental and calculated vibrational spectra. Journal of Chemical Physics, 2000, 113, 1258-1267.	1.2	12
344	Conserved Patterns in Backbone Torsional Changes Allow for Single Base Flipping from Duplex DNA with Minimal Distortion of the Double Helix. Journal of Physical Chemistry B, 2006, 110, 10997-11004.	1.2	12
345	Structural and Thermodynamic Insight into <i>Escherichia coli</i> UvrABC-Mediated Incision of Cluster Diacetylaminofluorene Adducts on the <i>Nar</i> I Sequence. Chemical Research in Toxicology, 2013, 26, 1251-1262.	1.7	12
346	Impact of Geometry Optimization on Base–Base Stacking Interaction Energies in the Canonical A- and B-Forms of DNA. Journal of Physical Chemistry A, 2013, 117, 1560-1568.	1.1	12
347	Facile one-step synthesis of 2,5-diketopiperazines. Tetrahedron Letters, 2014, 55, 1905-1908.	0.7	12
348	Solvation dynamics: improved reproduction of the time-dependent Stokes shift with polarizable empirical force field chromophore models. Physical Chemistry Chemical Physics, 2019, 21, 17703-17710.	1.3	12
349	Balanced polarizable Drude force field parameters for molecular anions: phosphates, sulfates, sulfates, sulfamates, and oxides. Journal of Molecular Modeling, 2020, 26, 152.	0.8	12
350	Inactivation of lactate dehydrogenase by UV radiation in the 300 nm wavelength region. Radiation and Environmental Biophysics, 1989, 28, 185-191.	0.6	11
351	3-Chloropropanoic acid (UMB66): a ligand for the gamma-hydroxybutyric acid receptor lacking a 4-hydroxyl group. Bioorganic and Medicinal Chemistry, 2004, 12, 1643-1647.	1.4	11
352	Unexpected Relative Aqueous Solubilities of a Phosphotyrosine Analogue and Two Phosphonate Derivatives. Journal of the American Chemical Society, 2005, 127, 4640-4648.	6.6	11
353	Using Caenorhabditis elegans as a model organism for evaluating extracellular signal-regulated kinase docking domain inhibitors. Journal of Cell Communication and Signaling, 2008, 2, 81-92.	1.8	11
354	Conformational Preference of Serogroup B <i>Salmonella</i> O Polysaccharide in Presence and Absence of the Monoclonal Antibody Se155–4. Journal of Physical Chemistry B, 2017, 121, 3412-3423.	1.2	11
355	Statistical mechanics of polarizable force fields based on classical Drude oscillators with dynamical propagation by the dual-thermostat extended Lagrangian. Journal of Chemical Physics, 2020, 153, 114108.	1.2	11
356	Species-Specific Endotoxin Stimulus Determines Toll-Like Receptor 4- and Caspase 11-Mediated Pathway Activation Characteristics. MSystems, 2021, 6, e0030621.	1.7	11
357	Molecular dynamics simulations of ribonuclease T1. European Biophysics Journal, 1988, 16, 287-297.	1.2	10
358	Rearrangement of 5-Trimethylsilylthebaine on Treatment with L-Selectride:Â An Efficient Synthesis of (+)-Bractazonine. Journal of Organic Chemistry, 2003, 68, 1929-1932.	1.7	10
359	Chemical Substituent Effect on Pyridine Permeability and Mechanistic Insight from Computational Molecular Descriptors. Molecular Pharmaceutics, 2006, 3, 745-755.	2.3	10
360	Impact of Substrate Protonation and Tautomerization States on Interactions with the Active Site of Arginase I. Journal of Chemical Information and Modeling, 2013, 53, 452-460.	2.5	10

#	Article	IF	CITATIONS
361	Novel protein–inhibitor interactions in site 3 of Ca ²⁺ -bound S100B as discovered by X-ray crystallography. Acta Crystallographica Section D: Structural Biology, 2016, 72, 753-760.	1.1	10
362	Small molecules inhibitors of the heterogeneous ribonuclear protein A18 (hnRNP A18): a regulator of protein translation and an immune checkpoint. Nucleic Acids Research, 2021, 49, 1235-1246.	6.5	10
363	Global Optimization of the Lennard-Jones Parameters for the Drude Polarizable Force Field. Journal of Chemical Theory and Computation, 2021, 17, 7085-7095.	2.3	10
364	Thermodynamic analysis of the equilibrium, association and dissociation of 2′GMP and 3′GMP with ribonuclease T1 at pH 5.3. Biochimica Et Biophysica Acta - General Subjects, 1991, 1073, 357-365.	1.1	9
365	Functionalization of the 6,14-Bridge of the Orvinols. 2.1 Preparation of 18- and 19-Hydroxyl-Substituted Thevinols and Their Treatment with Benzyl Bromide. Journal of Organic Chemistry, 2005, 70, 1907-1910.	1.7	9
366	Transmembrane Domain II of the Human Bile Acid Transporter SLC10A2 Coordinates Sodium Translocation. Journal of Biological Chemistry, 2013, 288, 32394-32404.	1.6	9
367	Cyclopropyl-containing positive allosteric modulators of metabotropic glutamate receptor subtype 5. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2275-2279.	1.0	9
368	Structural effects of modified ribonucleotides and magnesium in transfer RNAs. Bioorganic and Medicinal Chemistry, 2016, 24, 4826-4834.	1.4	9
369	Mg2+ Impacts the Twister Ribozyme through Push-Pull Stabilization of Nonsequential Phosphate Pairs. Biophysical Journal, 2020, 118, 1424-1437.	0.2	9
370	Toward Biotherapeutics Formulation Composition Engineering using Site-Identification by Ligand Competitive Saturation (SILCS). Journal of Pharmaceutical Sciences, 2021, 110, 1103-1110.	1.6	9
371	Observations on the A versus B Equilibrium in Molecular Dynamics Simulations of Duplex DNA and RNA. ACS Symposium Series, 1997, , 304-311.	0.5	8
372	Identification of Novel Nonsteroidal Compounds as Substrates or Inhibitors of hASBT. Journal of Pharmaceutical Sciences, 2012, 101, 116-126.	1.6	8
373	Conformational Heterogeneity of Intracellular Loop 3 of the μ-opioid G-protein Coupled Receptor. Journal of Physical Chemistry B, 2016, 120, 11897-11904.	1.2	8
374	Formalisms for the Explicit Inclusion of Electronic Polarizability in Molecular Modeling and Dynamics Studies. Challenges and Advances in Computational Chemistry and Physics, 2009, , 219-257.	0.6	8
375	Computer-Aided Drug Design: Structure-Activity Relationships of Delta Opioid Ligands. Drug Design Reviews Online, 2005, 2, 277-291.	0.7	8
376	Application of site-identification by ligand competitive saturation in computer-aided drug design. New Journal of Chemistry, 2022, 46, 919-932.	1.4	8
377	Hydrophobic residues in small ankyrin 1 participate in binding to obscurin. Molecular Membrane Biology, 2012, 29, 36-51.	2.0	7
378	Room temperature catalyst-free Knoevenagel condensation: facile access to isatinylidenerhodanines. Tetrahedron Letters, 2013, 54, 1700-1703.	0.7	7

#	Article	IF	CITATIONS
379	Structure–activity exploration of a small-molecule Lipid II inhibitor. Drug Design, Development and Therapy, 2015, 9, 2383.	2.0	7
380	Development and current status of the CHARMM force field for nucleic acids. , 0, .		7
381	Characterizing Structural Transitions Using Localized Free Energy Landscape Analysis. PLoS ONE, 2009, 4, e5525.	1.1	7
382	Towards Development of Small Molecule Lipid II Inhibitors as Novel Antibiotics. PLoS ONE, 2016, 11, e0164515.	1.1	7
383	Accurate Modeling of RNA Hairpins Through the Explicit Treatment of Electronic Polarizability with the Classical Drude Oscillator Force Field. Journal of Computational Biophysics and Chemistry, 2022, 21, 461-471.	1.0	7
384	CHARMM Additive All-Atom Force Field for Acyclic Carbohydrates and Inositol. Journal of Chemical Theory and Computation, 2008, 4, 1990-1990.	2.3	6
385	Putative Irreversible Inhibitors of the Human Sodium-Dependent Bile Acid Transporter (hASBT;) Tj ETQq1 1 0.784 Pharmaceutical Research, 2012, 29, 1821-1831.	314 rgBT / 1.7	Overlock 10 6
386	Impact of branching on the conformational heterogeneity of the lipopolysaccharide from Klebsiella pneumoniae: Implications for vaccine design. Carbohydrate Research, 2019, 475, 39-47.	1.1	6
387	Rationally Designed Polypharmacology: αâ€Helix Mimetics as Dual Inhibitors of the Oncoproteins Mclâ€1 and HDM2. ChemMedChem, 2020, 15, 1691-1698.	1.6	6
388	Specificity of Molecular Fragments Binding to S100B versus S100A1 as Identified by NMR and Site Identification by Ligand Competitive Saturation (SILCS). Molecules, 2021, 26, 381.	1.7	6
389	Functional Group Distributions, Partition Coefficients, and Resistance Factors in Lipid Bilayers Using Site Identification by Ligand Competitive Saturation. Journal of Chemical Theory and Computation, 2021, 17, 3188-3202.	2.3	6
390	Combined ab initio/empirical approach for optimization of Lennard–Jones parameters. Journal of Computational Chemistry, 1998, 19, 334.	1.5	6
391	Interatomic Potentials: Molecules. , 2005, , 509-525.		6
392	[21] Molecular modeling and dynamics of biologically active peptides: Application to neuropeptide Y. Methods in Enzymology, 1991, 202, 449-470.	0.4	5
393	DNA bending induced by carbocyclic sugar analogs constrained to the north conformation. Biopolymers, 2007, 85, 438-449.	1.2	5
394	Bifurcated Hydrogen Bonding and Asymmetric Fluctuations in a Carbohydrate Crystal Studied via X-ray Crystallography and Computational Analysis. Journal of Physical Chemistry B, 2013, 117, 7546-7553.	1.2	5
395	(Ala) ₄ â€Xâ€{Ala) ₄ as a model system for the optimization of the <i>ï‡</i> ₁ and <i>ï‡</i> ₂ amino acid side hain dihedral empirical force field parameters. Journal of Computational Chemistry, 2013, 34, 593-603.	1.5	5
396	lons Everywhere? Mg2+ in the μ-Opioid GPCR and Atomic Details of Their Impact on Function. Biophysical Journal, 2020, 118, 783-784.	0.2	5

#	Article	IF	CITATIONS
397	Optimization of a Benzothiazole Indolene Scaffold Targeting Bacterial Cell Wall Assembly. Drug Design, Development and Therapy, 2020, Volume 14, 567-574.	2.0	5
398	Predicting Partition Coefficients of Neutral and Charged Solutes in the Mixed SLES–Fatty Acid Micellar System. Journal of Physical Chemistry B, 2020, 124, 1653-1664.	1.2	5
399	Insights into substrate recognition and specificity for IgG by Endoglycosidase S2. PLoS Computational Biology, 2021, 17, e1009103.	1.5	5
400	Cholecalciferol complexation with hydroxypropyl-β-cyclodextrin (HPBCD) and its molecular dynamics simulation. Pharmaceutical Development and Technology, 2022, 27, 389-398.	1.1	5
401	Theoretical Studies of Nucleic Acids and Nucleic Acid-Protein Complexes using Charmm. , 2006, , 73-94.		4
402	POSE SCALING: GEOMETRICAL ASSESSMENT OF LIGAND BINDING POSES. Journal of Theoretical and Computational Chemistry, 2008, 07, 833-852.	1.8	4
403	Contributions and competition of Mg ²⁺ and K ⁺ in folding and stabilization of the Twister ribozyme. Rna, 2020, 26, 1704-1715.	1.6	4
404	Insights into Glucose-6-phosphate Allosteric Activation of β-Glucosidase A. Journal of Chemical Information and Modeling, 2021, 61, 1931-1941.	2.5	4
405	Combined ab initio/empirical approach for optimization of Lennard–Jones parameters. , 1998, 19, 334.		4
406	Computational and Experimental Characterization of rDNA and rRNA G-Quadruplexes. Journal of Physical Chemistry B, 2022, 126, 609-619.	1.2	4
407	Scaffold hopping from indoles to indazoles yields dual MCL-1/BCL-2 inhibitors from MCL-1 selective leads. RSC Medicinal Chemistry, 2022, 13, 963-969.	1.7	4
408	hERG Blockade Prediction by Combining Site Identification by Ligand Competitive Saturation and Physicochemical Properties. Chemistry, 2022, 4, 630-646.	0.9	4
409	Synthesis and Characterization of a NovelDiels-AlderAdduct of Codeine. Helvetica Chimica Acta, 2010, 93, 220-226.	1.0	3
410	Estimation of Ligand Efficacies of Metabotropic Glutamate Receptors from Conformational Forces Obtained from Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2013, 53, 1337-1349.	2.5	3
411	Cooperative Helix Formation in the (AAQAA)3 Peptide Obtained with the Drude Polarizable Force Field. Biophysical Journal, 2015, 108, 518a.	0.2	3
412	A molecular mechanics force field for NAD+ NADH, and the pyrophosphate groups of nucleotides. , 1997, 18, 221.		3
413	Empirical Force Fields. Biological and Medical Physics Series, 2007, , 45-69.	0.3	2
414	Deconstructing 14-phenylpropyloxymetopon: Minimal requirements for binding to mu opioid receptors. Bioorganic and Medicinal Chemistry, 2012, 20, 4556-4563.	1.4	2

#	Article	IF	CITATIONS
415	Quantifying the Binding Interaction between the Hypoxia-Inducible Transcription Factor and the von Hippel–Lindau Suppressor. Journal of Chemical Theory and Computation, 2015, 11, 3946-3954.	2.3	2
416	Inhibition of protein-protein interactions with low molecular weight compounds. , 2008, 5, 21-32.		2
417	Drude Model Based Polarizable Force Field for Lipids. Biophysical Journal, 2013, 104, 31a.	0.2	1
418	Inhibiting S100B in Malignant Melanoma. , 2013, , .		1
419	Expedient access to pre-organized α-helix mimetics based on an isocinchomeronic acid core. Tetrahedron Letters, 2015, 56, 6819-6822.	0.7	1
420	Simple Synthesis of a Heterocyclophane Exhibiting Anti â€Met Activity by Acting as a Hatch Blocking Access to the Active Site**. Chemistry - A European Journal, 2021, 27, 1648-1654.	1.7	1
421	Stereoisomerization of human constitutive androstane receptor agonist CITCO. Tetrahedron, 2021, 79, 131886.	1.0	1
422	Development of CHARMM Additive Potential Energy Parameters for α-Methyl Amino Acids. Journal of Physical Chemistry B, 2021, 125, 11687-11696.	1.2	0
423	Developing Kinase Inhibitors Using Computer-Aided Drug Design Approaches. , 2020, , 81-108.		0