List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1574786/publications.pdf Version: 2024-02-01

Ι ΑΝΟΙΙΝ ΜΑΟ

#	Article	IF	CITATIONS
1	Size-Controlled Synthesis of Porphyrinic Metal–Organic Framework and Functionalization for Targeted Photodynamic Therapy. Journal of the American Chemical Society, 2016, 138, 3518-3525.	6.6	683
2	Graphdiyne Oxides as Excellent Substrate for Electroless Deposition of Pd Clusters with High Catalytic Activity. Journal of the American Chemical Society, 2015, 137, 5260-5263.	6.6	341
3	Adsorption of Methylene Blue Dye onto Carbon Nanotubes:Â A Route to an Electrochemically Functional Nanostructure and Its Layer-by-Layer Assembled Nanocomposite. Chemistry of Materials, 2005, 17, 3457-3463.	3.2	340
4	Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosensors and Bioelectronics, 2005, 20, 1270-1276.	5.3	319
5	Mitochondria Targeted Nanoscale Zeolitic Imidazole Framework-90 for ATP Imaging in Live Cells. Journal of the American Chemical Society, 2017, 139, 5877-5882.	6.6	291
6	Electrochemistry and Electroanalytical Applications of Carbon Nanotubes: A Review. Analytical Sciences, 2005, 21, 1383-1393.	0.8	289
7	Nanoscale ATP-Responsive Zeolitic Imidazole Framework-90 as a General Platform for Cytosolic Protein Delivery and Genome Editing. Journal of the American Chemical Society, 2019, 141, 3782-3786.	6.6	286
8	Colorimetric Detection of Glucose in Rat Brain Using Gold Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 4800-4804.	7.2	247
9	Zeolitic Imidazolate Framework-Based Electrochemical Biosensor for in Vivo Electrochemical Measurements. Analytical Chemistry, 2013, 85, 7550-7557.	3.2	247
10	Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles. Advanced Materials, 2019, 31, e1902575.	11.1	244
11	Carbon Nanotube-Modified Carbon Fiber Microelectrodes for In Vivo Voltammetric Measurement of Ascorbic Acid in Rat Brain. Analytical Chemistry, 2007, 79, 6559-6565.	3.2	225
12	Real-time Ratiometric Fluorescent Assay for Alkaline Phosphatase Activity with Stimulus Responsive Infinite Coordination Polymer Nanoparticles. Analytical Chemistry, 2015, 87, 3080-3086.	3.2	223
13	A single-atom Fe–N ₄ catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chemical Communications, 2019, 55, 159-162.	2.2	209
14	Aptamer-Based Electrochemical Sensors with Aptamerâ^'Complementary DNA Oligonucleotides as Probe. Analytical Chemistry, 2008, 80, 1883-1890.	3.2	203
15	Single-Atom Co–N ₄ Electrocatalyst Enabling Four-Electron Oxygen Reduction with Enhanced Hydrogen Peroxide Tolerance for Selective Sensing. Journal of the American Chemical Society, 2020, 142, 16861-16867.	6.6	184
16	Rational design of quinones for high power density biofuel cells. Chemical Science, 2015, 6, 4867-4875.	3.7	182
17	Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes. Biosensors and Bioelectronics, 2004, 20, 253-259.	5.3	179
18	In Vivo Analysis with Electrochemical Sensors and Biosensors. Analytical Chemistry, 2017, 89, 300-313.	3.2	169

#	Article	IF	CITATIONS
19	Rational Design of Surface/Interface Chemistry for Quantitative in Vivo Monitoring of Brain Chemistry. Accounts of Chemical Research, 2012, 45, 533-543.	7.6	159
20	Carbon Atom Hybridization Matters: Ultrafast Humidity Response of Graphdiyne Oxides. Angewandte Chemie - International Edition, 2018, 57, 3922-3926.	7.2	159
21	Single-atom Ni-N4 provides a robust cellular NO sensor. Nature Communications, 2020, 11, 3188.	5.8	153
22	Superoxide Dismutase-Based Third-Generation Biosensor for Superoxide Anion. Analytical Chemistry, 2002, 74, 2428-2434.	3.2	147
23	Solâ^'Gel-Derived Ceramicâ^'Carbon Nanotube Nanocomposite Electrodes:  Tunable Electrode Dimension and Potential Electrochemical Applications. Analytical Chemistry, 2004, 76, 6500-6505.	3.2	143
24	An enzymatic glucose/O2 biofuel cell: Preparation, characterization and performance in serum. Electrochemistry Communications, 2007, 9, 989-996.	2.3	136
25	Magnetically separable Fe3O4–Ag3PO4 sub-micrometre composite: facile synthesis, high visible light-driven photocatalytic efficiency, and good recyclability. RSC Advances, 2012, 2, 5108.	1.7	130
26	Ultrathin Cellâ€Membraneâ€Mimic Phosphorylcholine Polymer Film Coating Enables Large Improvements for Inâ€Vivo Electrochemical Detection. Angewandte Chemie - International Edition, 2017, 56, 11802-11806.	7.2	130
27	Continuous On-Line Monitoring of Extracellular Ascorbate Depletion in the Rat Striatum Induced by Global Ischemia with Carbon Nanotube-Modified Glassy Carbon Electrode Integrated into a Thin-Layer Radial Flow Cell. Analytical Chemistry, 2005, 77, 6234-6242.	3.2	125
28	Recent progress in highly efficient Ag-based visible-light photocatalysts. RSC Advances, 2014, 4, 53649-53661.	1.7	121
29	Direct Electrochemistry of Multi-Copper Oxidases at Carbon Nanotubes Noncovalently Functionalized with Cellulose Derivatives. Electroanalysis, 2006, 18, 587-594.	1.5	117
30	Graphdiyne oxide as a platform for fluorescence sensing. Chemical Communications, 2016, 52, 5629-5632.	2.2	115
31	Rational Attachment of Synthetic Triptycene Orthoquinone onto Carbon Nanotubes for Electrocatalysis and Sensitive Detection of Thiols. Analytical Chemistry, 2005, 77, 8158-8165.	3.2	114
32	A Facile Electrochemical Method for Simultaneous and On-Line Measurements of Glucose and Lactate in Brain Microdialysate with Prussian Blue as the Electrocatalyst for Reduction of Hydrogen Peroxide. Analytical Chemistry, 2007, 79, 9577-9583.	3.2	113
33	Physiologically Relevant Online Electrochemical Method for Continuous and Simultaneous Monitoring of Striatum Glucose and Lactate Following Global Cerebral Ischemia/Reperfusion. Analytical Chemistry, 2009, 81, 2067-2074.	3.2	108
34	<i>In Vivo</i> Electrochemical Sensors for Neurochemicals: Recent Update. ACS Sensors, 2019, 4, 3102-3118.	4.0	107
35	Micrometer-Scale Ion Current Rectification at Polyelectrolyte Brush-Modified Micropipets. Journal of the American Chemical Society, 2017, 139, 1396-1399.	6.6	106
36	An efficient electrocatalyst for oxygen reduction reaction derived from a Co-porphyrin-based covalent organic framework. Electrochemistry Communications, 2015, 52, 53-57.	2.3	103

#	Article	IF	CITATIONS
37	Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores. Analytical Chemistry, 2018, 90, 7004-7011.	3.2	103
38	Vertically Aligned Carbon Nanotube-Sheathed Carbon Fibers as Pristine Microelectrodes for Selective Monitoring of Ascorbate in Vivo. Analytical Chemistry, 2014, 86, 3909-3914.	3.2	102
39	Electrochemical Properties of Carbon Nanotube (CNT) Film Electrodes Prepared by Controllable Adsorption of CNTs onto an Alkanethiol Monolayer Self-Assembled on Gold Electrodes. Analytical Chemistry, 2006, 78, 2651-2657.	3.2	101
40	Silver Phosphate/Carbon Nanotube-Stabilized Pickering Emulsion for Highly Efficient Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 15183-15191.	1.5	101
41	Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing. Accounts of Chemical Research, 2019, 52, 665-675.	7.6	99
42	Continuous and Simultaneous Electrochemical Measurements of Glucose, Lactate, and Ascorbate in Rat Brain Following Brain Ischemia. Analytical Chemistry, 2014, 86, 3895-3901.	3.2	97
43	In Vivo Monitoring of Oxygen in Rat Brain by Carbon Fiber Microelectrode Modified with Antifouling Nanoporous Membrane. Analytical Chemistry, 2019, 91, 3645-3651.	3.2	97
44	Electrochemistry and Electrocatalytic Activities of Superoxide Dismutases at Gold Electrodes Modified with a Self-Assembled Monolayer. Analytical Chemistry, 2004, 76, 4162-4168.	3.2	93
45	Target-Triggered Switching on and off the Luminescence of Lanthanide Coordination Polymer Nanoparticles for Selective and Sensitive Sensing of Copper Ions in Rat Brain. Analytical Chemistry, 2015, 87, 6834-6841.	3.2	93
46	On the Origin of Ionic Rectification in DNA-Stuffed Nanopores: The Breaking and Retrieving Symmetry. Journal of the American Chemical Society, 2017, 139, 18739-18746.	6.6	92
47	Zwitterionic Polydopamine Engineered Interface for In Vivo Sensing with High Biocompatibility. Angewandte Chemie - International Edition, 2020, 59, 23445-23449.	7.2	92
48	Self-powered electrochemical systems as neurochemical sensors: toward self-triggered in vivo analysis of brain chemistry. Chemical Society Reviews, 2017, 46, 2692-2704.	18.7	89
49	Online Electrochemical Monitoring of Dynamic Change of Hippocampal Ascorbate: Toward a Platform for In Vivo Evaluation of Antioxidant Neuroprotective Efficiency against Cerebral Ischemia Injury. Analytical Chemistry, 2013, 85, 9947-9954.	3.2	87
50	Continuous On-Line Measurement of Cerebral Hydrogen Peroxide Using Enzyme-Modified Ringâ^'Disk Plastic Carbon Film Electrode. Analytical Chemistry, 2002, 74, 3684-3689.	3.2	86
51	Dual Recognition Unit Strategy Improves the Specificity of the Adenosine Triphosphate (ATP) Aptamer Biosensor for Cerebral ATP Assay. Analytical Chemistry, 2015, 87, 1373-1380.	3.2	86
52	Biological Applications of Organic Electrochemical Transistors: Electrochemical Biosensors and Electrophysiology Recording. Frontiers in Chemistry, 2019, 7, 313.	1.8	85
53	Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors. Electrochimica Acta, 2007, 52, 4144-4152.	2.6	81
54	Nitrogen-Doped Carbon Nanotubes Supported by Macroporous Carbon as an Efficient Enzymatic Biosensing Platform for Glucose. Analytical Chemistry, 2016, 88, 1371-1377.	3.2	80

#	Article	IF	CITATIONS
55	Brain Endothelial Cells Maintain Lactate Homeostasis and Control Adult Hippocampal Neurogenesis. Cell Stem Cell, 2019, 25, 754-767.e9.	5.2	79
56	High‥ield and Damageâ€free Exfoliation of Layered Graphdiyne in Aqueous Phase. Angewandte Chemie - International Edition, 2019, 58, 746-750.	7.2	79
57	Dynamic regional changes of extracellular ascorbic acid during global cerebral ischemia: Studied with in vivo microdialysis coupled with on-line electrochemical detection. Brain Research, 2009, 1253, 161-168.	1.1	75
58	Photoinduced Regeneration of an Aptamer-Based Electrochemical Sensor for Sensitively Detecting Adenosine Triphosphate. Analytical Chemistry, 2018, 90, 4968-4971.	3.2	73
59	Role of Organic Solvents in Immobilizing Fungus Laccase on Single-Walled Carbon Nanotubes for Improved Current Response in Direct Bioelectrocatalysis. Journal of the American Chemical Society, 2017, 139, 1565-1574.	6.6	71
60	A Generalizable and Noncovalent Strategy for Interfacing Aptamers with a Microelectrode for the Selective Sensing of Neurotransmitters Inâ€Vivo. Angewandte Chemie - International Edition, 2020, 59, 18996-19000.	7.2	70
61	Metal–Organic Framework Membrane Nanopores as Biomimetic Photoresponsive Ion Channels and Photodriven Ion Pumps. Angewandte Chemie - International Edition, 2020, 59, 12795-12799.	7.2	70
62	In‣itu Encapsulation of Protein into Nanoscale Hydrogenâ€Bonded Organic Frameworks for Intracellular Biocatalysis. Angewandte Chemie - International Edition, 2021, 60, 22315-22321.	7.2	70
63	Graphdiyne as Electrode Material: Tuning Electronic State and Surface Chemistry for Improved Electrode Reactivity. Analytical Chemistry, 2017, 89, 13008-13015.	3.2	67
64	Graphdiyne-Promoted Highly Efficient Photocatalytic Activity of Graphdiyne/Silver Phosphate Pickering Emulsion Under Visible-Light Irradiation. ACS Applied Materials & Interfaces, 2019, 11, 2684-2691.	4.0	64
65	Hierarchical Selfâ€assembly of Discrete Metal–Organic Cages into Supramolecular Nanoparticles for Intracellular Protein Delivery. Angewandte Chemie - International Edition, 2021, 60, 5429-5435.	7.2	64
66	Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	64
67	Cell-Selective Messenger RNA Delivery and CRISPR/Cas9 Genome Editing by Modulating the Interface of Phenylboronic Acid-Derived Lipid Nanoparticles and Cellular Surface Sialic Acid. ACS Applied Materials & Interfaces, 2019, 11, 46585-46590.	4.0	63
68	Electron Hopping by Interfacing Semiconducting Graphdiyne Nanosheets and Redox Molecules for Selective Electrocatalysis. Journal of the American Chemical Society, 2020, 142, 2074-2082.	6.6	63
69	Graphdiyne oxide: a new carbon nanozyme. Chemical Communications, 2020, 56, 5115-5118.	2.2	63
70	Noncovalent Attachment of NAD ⁺ Cofactor onto Carbon Nanotubes for Preparation of Integrated Dehydrogenase-Based Electrochemical Biosensors. Langmuir, 2010, 26, 6028-6032.	1.6	61
71	Visualization and Quantification of Neurochemicals with Gold Nanoparticles: Opportunities and Challenges. Advanced Materials, 2014, 26, 6933-6943.	11.1	59
72	Fabrication of a Flexible and Stretchable Nanostructured Gold Electrode Using a Facile Ultraviolet-Irradiation Approach for the Detection of Nitric Oxide Released from Cells. Analytical Chemistry, 2018, 90, 7158-7163.	3.2	59

#	Article	IF	CITATIONS
73	Protein Pretreatment of Microelectrodes Enables in Vivo Electrochemical Measurements with Easy Precalibration and Interference-Free from Proteins. Analytical Chemistry, 2016, 88, 7238-7244.	3.2	58
74	A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine. Biosensors and Bioelectronics, 2010, 25, 1350-1355.	5.3	57
75	Single-atom electrocatalysis: a new approach to in vivo electrochemical biosensing. Science China Chemistry, 2019, 62, 1720-1724.	4.2	57
76	Platinized Aligned Carbon Nanotube-Sheathed Carbon Fiber Microelectrodes for In Vivo Amperometric Monitoring of Oxygen. Analytical Chemistry, 2014, 86, 5017-5023.	3.2	56
77	Colorimetric and Fluorescent Dual Mode Sensing of Alcoholic Strength in Spirit Samples with Stimuli-Responsive Infinite Coordination Polymers. Analytical Chemistry, 2015, 87, 6958-6965.	3.2	56
78	Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain. Analyst, The, 2013, 138, 179-185.	1.7	55
79	Electrochemical Monitoring of Propagative Fluctuation of Ascorbate in the Live Rat Brain during Spreading Depolarization. Angewandte Chemie - International Edition, 2019, 58, 6616-6619.	7.2	55
80	Low-Fouling Nanoporous Conductive Polymer-Coated Microelectrode for In Vivo Monitoring of Dopamine in the Rat Brain. Analytical Chemistry, 2019, 91, 10786-10791.	3.2	54
81	Determination of nitric oxide with ultramicrosensors based on electropolymerized films of metal tetraaminophthalocyanines. Talanta, 1999, 48, 1005-1011.	2.9	52
82	Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers. Analyst, The, 2008, 133, 1256.	1.7	52
83	Comparative study of change in extracellular ascorbic acid in different brain ischemia/reperfusion models with in vivo microdialysis combined with on-line electrochemical detection. Neurochemistry International, 2008, 52, 1247-1255.	1.9	51
84	Chaotropic Monovalent Anionâ€Induced Rectification Inversion at Nanopipettes Modified by Polyimidazolium Brushes. Angewandte Chemie - International Edition, 2018, 57, 4590-4593.	7.2	51
85	Highly Selective Cerebral ATP Assay Based on Micrometer Scale Ion Current Rectification at Polyimidazolium-Modified Micropipettes. Analytical Chemistry, 2017, 89, 6794-6799.	3.2	48
86	Enzyme-Instructed Activation of Pro-protein Therapeutics In Vivo. Journal of the American Chemical Society, 2019, 141, 18136-18141.	6.6	48
87	Natural Leukocyte Membrane-Masked Microelectrodes with an Enhanced Antifouling Ability and Biocompatibility for <i>In Vivo</i> Electrochemical Sensing. Analytical Chemistry, 2020, 92, 11374-11379.	3.2	48
88	Hybridization of Bioelectrochemically Functional Infinite Coordination Polymer Nanoparticles with Carbon Nanotubes for Highly Sensitive and Selective In Vivo Electrochemical Monitoring. Analytical Chemistry, 2013, 85, 4007-4013.	3.2	47
89	Recent advances on inÂvivo analysis of ascorbic acid in brain functions. TrAC - Trends in Analytical Chemistry, 2018, 109, 247-259.	5.8	47
90	High Antifouling Property of Ion-Selective Membrane: toward In Vivo Monitoring of pH Change in Live Brain of Rats with Membrane-Coated Carbon Fiber Electrodes. Analytical Chemistry, 2016, 88, 11238-11243.	3.2	46

#	Article	IF	CITATIONS
91	Spatiotemporal Delivery of CRISPR/Cas9 Genome Editing Machinery Using Stimuliâ€Responsive Vehicles. Angewandte Chemie - International Edition, 2021, 60, 8596-8606.	7.2	46
92	Phenolic Resin and Derived Carbon Hollow Spheres. Macromolecular Chemistry and Physics, 2006, 207, 1633-1639.	1.1	45
93	Potential-Dynamic Surface Chemistry Controls the Electrocatalytic Processes of Ethanol Oxidation on Gold Surfaces. ACS Energy Letters, 2019, 4, 215-221.	8.8	45
94	Graphdiyne: A New Carbon Allotrope for Electrochemiluminescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
95	Controllable and Reproducible Sheath of Carbon Fibers with Single-Walled Carbon Nanotubes through Electrophoretic Deposition for In Vivo Electrochemical Measurements. Analytical Chemistry, 2018, 90, 4840-4846.	3.2	44
96	Unveiling the Role of DJâ€1 Protein in Vesicular Storage and Release of Catecholamine with Nano/Microâ€Tip Electrodes. Angewandte Chemie - International Edition, 2020, 59, 11061-11065.	7.2	44
97	Enzyme-based amperometric biosensors for continuous and on-line monitoring of cerebral extracellular microdialysate. Frontiers in Bioscience - Landmark, 2005, 10, 345.	3.0	43
98	Rational Functionalization of Carbon Nanotubes Leading to Electrochemical Devices with Striking Applications. Advanced Materials, 2008, 20, 2899-2906.	11.1	43
99	Electrochemically Probing Dynamics of Ascorbate during Cytotoxic Edema in Living Rat Brain. Journal of the American Chemical Society, 2020, 142, 19012-19016.	6.6	43
100	Singleâ€Carbonâ€Fiberâ€Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angewandte Chemie - International Edition, 2020, 59, 22652-22658.	7.2	43
101	Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie - International Edition, 2021, 60, 23777-23783.	7.2	43
102	Microfluidic Chip-Based Online Electrochemical Detecting System for Continuous and Simultaneous Monitoring of Ascorbate and Mg ²⁺ in Rat Brain. Analytical Chemistry, 2013, 85, 7599-7605.	3.2	42
103	In Vivo Measurement of Calcium Ion with Solid-State Ion-Selective Electrode by Using Shelled Hollow Carbon Nanospheres as a Transducing Layer. Analytical Chemistry, 2019, 91, 4421-4428.	3.2	42
104	Identification of Flavin Mononucleotide as a Cellâ€Active Artificial <i>N</i> ⁶ â€Methyladenosine RNA Demethylase. Angewandte Chemie - International Edition, 2019, 58, 5028-5032.	7.2	42
105	Thermal responsive fluorescent block copolymer for intracellular temperature sensing. Journal of Materials Chemistry, 2012, 22, 11543.	6.7	41
106	Strong Interaction between Imidazolium-Based Polycationic Polymer and Ferricyanide: Toward Redox Potential Regulation for Selective In Vivo Electrochemical Measurements. Analytical Chemistry, 2012, 84, 1900-1906.	3.2	40
107	Observing single nanoparticle events at the orifice of a nanopipet. Chemical Science, 2016, 7, 6365-6368.	3.7	40
108	On-site sensors based on infinite coordination polymer nanoparticles: Recent progress and future challenge. Applied Materials Today, 2018, 11, 338-351.	2.3	38

#	Article	IF	CITATIONS
109	Single-entity electrochemistry at confined sensing interfaces. Science China Chemistry, 2020, 63, 589-618.	4.2	38
110	Bioelectrochemically Active Infinite Coordination Polymer Nanoparticles: Oneâ€Pot Synthesis and Biosensing Property. Chemistry - A European Journal, 2011, 17, 11390-11393.	1.7	37
111	Sensitive and Fast Humidity Sensor Based on A Redox Conducting Supramolecular Ionic Material for Respiration Monitoring. Analytical Chemistry, 2017, 89, 996-1001.	3.2	37
112	Tuning interionic interaction for highly selective in vivo analysis. Chemical Society Reviews, 2015, 44, 5959-5968.	18.7	36
113	Ultrathin Cellâ€Membraneâ€Mimic Phosphorylcholine Polymer Film Coating Enables Large Improvements for Inâ€Vivo Electrochemical Detection. Angewandte Chemie, 2017, 129, 11964-11968.	1.6	36
114	Carbon Atom Hybridization Matters: Ultrafast Humidity Response of Graphdiyne Oxides. Angewandte Chemie, 2018, 130, 3986-3990.	1.6	36
115	A single-atom Cu–N ₂ catalyst eliminates oxygen interference for electrochemical sensing of hydrogen peroxide in a living animal brain. Chemical Science, 2021, 12, 15045-15053.	3.7	36
116	Electrochemical Microsensor for In Vivo Measurements of Oxygen Based on Nafion and Methylviologen Modified Carbon Fiber Microelectrode. Electroanalysis, 1999, 11, 499-504.	1.5	35
117	Selective Amperometric Recording of Endogenous Ascorbate Secretion from a Single Rat Adrenal Chromaffin Cell with Pretreated Carbon Fiber Microelectrodes. Analytical Chemistry, 2017, 89, 9502-9507.	3.2	35
118	Galvanic Redox Potentiometry for Self-Driven in Vivo Measurement of Neurochemical Dynamics at Open-Circuit Potential. Analytical Chemistry, 2018, 90, 13021-13029.	3.2	35
119	Ion current rectification: from nanoscale to microscale. Science China Chemistry, 2019, 62, 1346-1359.	4.2	35
120	Graphene quantum dots nanosensor derived from 3D nanomesh graphene frameworks and its application for fluorescent sensing of Cu2+ in rat brain. Sensors and Actuators B: Chemical, 2018, 258, 672-681.	4.0	34
121	In Situ Cationic Ring-Opening Polymerization and Quaternization Reactions To Confine Ferricyanide onto Carbon Nanotubes: A General Approach to Development of Integrative Nanostructured Electrochemical Biosensors. Analytical Chemistry, 2008, 80, 6587-6593.	3.2	33
122	A multi-enzyme microreactor-based online electrochemical system for selective and continuous monitoring of acetylcholine. Analyst, The, 2015, 140, 3781-3787.	1.7	32
123	Dualâ€function interface engineering for efficient perovskite solar cells. EcoMat, 2021, 3, e12092.	6.8	32
124	A novel thin-layer amperometric detector based on chemically modified ring-disc electrode and its application for simultaneous measurements of nitric oxide and nitrite in rat brain combined with in vivo microdialysis. Talanta, 1998, 46, 1547-1556.	2.9	30
125	Galvanic Redox Potentiometry Based Microelectrode Array for Synchronous Ascorbate and Single-Unit Recordings in Rat Brain. Analytical Chemistry, 2020, 92, 10177-10182.	3.2	30
126	Rational Design and One-Step Formation of Multifunctional Gel Transducer for Simple Fabrication of Integrated Electrochemical Biosensors. Analytical Chemistry, 2011, 83, 5715-5720.	3.2	29

#	Article	IF	CITATIONS
127	Promiscuous Glucose Oxidase: Electrical Energy Conversion of Multiple Polysaccharides Spanning Starch and Dairy Milk. ACS Catalysis, 2015, 5, 7218-7225.	5.5	29
128	Effective Visualization Assay for Alcohol Content Sensing and Methanol Differentiation with Solvent Stimuli-Responsive Supramolecular Ionic Materials. Analytical Chemistry, 2014, 86, 7280-7285.	3.2	28
129	Dopamineâ€Directed Inâ€Situ and Oneâ€Step Synthesis of Au@Ag Core–Shell Nanoparticles Immobilized to a Metal–Organic Framework for Synergistic Catalysis. Chemistry - an Asian Journal, 2016, 11, 2705-2709.	1.7	28
130	Aptamer superstructure-based electrochemical biosensor for sensitive detection of ATP in rat brain with <i>in vivo</i> microdialysis. Analyst, The, 2019, 144, 1711-1717.	1.7	28
131	Collision of Aptamer/Pt Nanoparticles Enables Label-Free Amperometric Detection of Protein in Rat Brain. Analytical Chemistry, 2019, 91, 5654-5659.	3.2	28
132	Potential-controllable green synthesis and deposition of metal nanoparticles with electrochemical method. Journal of Materials Chemistry, 2010, 20, 5820.	6.7	26
133	Rational Design of Bioelectrochemically Multifunctional Film with Oxidase, Ferrocene, and Graphene Oxide for Development of in Vivo Electrochemical Biosensors. Analytical Chemistry, 2016, 88, 5885-5891.	3.2	26
134	Graphdiyne oxide enhances the stability of solid contact-based ionselective electrodes for excellent in vivo analysis. Science China Chemistry, 2019, 62, 1414-1420.	4.2	26
135	Carbon support tuned electrocatalytic activity of a single-site metal–organic framework toward the oxygen reduction reaction. Chemical Science, 2021, 12, 7908-7917.	3.7	26
136	Real-time and in-situ intracellular ATP assay with polyimidazolium brush-modified nanopipette. Science China Chemistry, 2020, 63, 1004-1011.	4.2	25
137	Synaptic Iontronic Devices for Brain-Mimicking Functions: Fundamentals and Applications. ACS Applied Bio Materials, 2021, 4, 71-84.	2.3	25
138	Enzyme-Catalyzed Activation of Pro-PROTAC for Cell-Selective Protein Degradation. CCS Chemistry, 2022, 4, 3809-3819.	4.6	25
139	Fastâ€Scanning Potentialâ€Gated Organic Electrochemical Transistors for Highly Sensitive Sensing of Dopamine in Living Rat Brain. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
140	Bioelectrochemistry for in vivo analysis: Interface engineering toward implantable electrochemical biosensors. Current Opinion in Electrochemistry, 2017, 5, 152-157.	2.5	24
141	Supportâ€Free PEDOT:PSS Fibers as Multifunctional Microelectrodes for In Vivo Neural Recording and Modulation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
142	A novel electrochemical strategy for developing alkaline air electrodes by a combined use of dual functional catalysts. Chemical Communications, 2003, , 2818.	2.2	23
143	In Vivo Electrochemical Monitoring of the Change of Cochlear Perilymph Ascorbate during Salicylate-Induced Tinnitus. Analytical Chemistry, 2012, 84, 5433-5438.	3.2	23
144	Counting and Sizing of Single Vesicles/Liposomes by Electrochemical Events. ChemElectroChem, 2018, 5, 2954-2962.	1.7	23

#	Article	IF	CITATIONS
145	Unveiling the Role of DJâ€1 Protein in Vesicular Storage and Release of Catecholamine with Nano/Microâ€Tip Electrodes. Angewandte Chemie, 2020, 132, 11154-11158.	1.6	23
146	Continuous Electrochemical Monitoring of Extracellular Lactate Production from Neonatal Rat Cardiomyocytes following Myocardial Hypoxia. Analytical Chemistry, 2012, 84, 5285-5291.	3.2	22
147	Ultrasonic-Aided Fabrication of Nanostructured Au-Ring Microelectrodes for Monitoring Transmitters Released from Single Cells. Analytical Chemistry, 2017, 89, 8683-8688.	3.2	22
148	Chaotropic Monovalent Anionâ€Induced Rectification Inversion at Nanopipettes Modified by Polyimidazolium Brushes. Angewandte Chemie, 2018, 130, 4680-4683.	1.6	22
149	Micrometer-scale transient ion transport for real-time pH assay in living rat brains. Chemical Science, 2021, 12, 7369-7376.	3.7	22
150	Exploring Ferredoxin-Dependent Glutamate Synthase as an Enzymatic Bioelectrocatalyst. Journal of the American Chemical Society, 2018, 140, 12700-12704.	6.6	21
151	Emissive carbon dots derived from natural liquid fuels and its biological sensing for copper ions. Talanta, 2020, 208, 120375.	2.9	21
152	Optoelectronic modulation of ionic conductance and rectification through a heterogeneous 1D/2D nanofluidic membrane. Chemical Communications, 2020, 56, 3508-3511.	2.2	21
153	Rapid and Costâ€Effective Synthesis of Nanosized Zeolitic Imidazolate Frameworkâ€7 with <i>N</i> , <i>N</i> ′â€Dimethylformamide as Solvent and Metal Acetate Salt as Metal Source. ChemPlusChem, 2014, 79, 907-913.	1.3	20
154	Selective RNA interference and gene silencing using reactive oxygen species-responsive lipid nanoparticles. Chemical Communications, 2019, 55, 8170-8173.	2.2	20
155	Sizing Single Particles at the Orifice of a Nanopipette. ACS Sensors, 2020, 5, 2351-2358.	4.0	19
156	Tetraphenylethyleneâ€Featured Fluorescent Supramolecular Nanoparticles for Intracellular Trafficking of Protein Delivery and Neuroprotection. Angewandte Chemie - International Edition, 2021, 60, 26740-26746.	7.2	19
157	A New Ultramicrosensor for Nitric Oxide Based on Electropolymerized Film of Nickel Salen. Analytical Letters, 1998, 31, 1991-2007.	1.0	18
158	Electrochemical Monitoring of Propagative Fluctuation of Ascorbate in the Live Rat Brain during Spreading Depolarization. Angewandte Chemie, 2019, 131, 6688-6691.	1.6	18
159	Derivatization reagent-assisted enantioseparation of 3-hydroxyaspartate with two chiral centers in rat cerebrospinal fluid by capillary electrophoresis-mass spectrometry. Analytica Chimica Acta, 2019, 1047, 257-266.	2.6	18
160	Bionanosensor based on N-doped graphene quantum dots coupled with CoOOH nanosheets and their application for inÂvivo analysis of ascorbic acid. Analytica Chimica Acta, 2020, 1100, 191-199.	2.6	18
161	A Generalizable and Noncovalent Strategy for Interfacing Aptamers with a Microelectrode for the Selective Sensing of Neurotransmitters Inâ€Vivo. Angewandte Chemie, 2020, 132, 19158-19162.	1.6	18
162	An activity-based two-photon fluorescent probe for real-time and reversible imaging of oxidative stress in the rat brain. Chemical Communications, 2020, 56, 6368-6371.	2.2	17

#	Article	IF	CITATIONS
163	Singleâ€Vesicle Electrochemistry Reveals Sex Difference in Vesicular Storage and Release of Catecholamine. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
164	Paraflocculus plays a role in salicylate-induced tinnitus. Hearing Research, 2017, 353, 176-184.	0.9	16
165	Enzymatic electrochemical biosensors for in situ neurochemical measurement. Current Opinion in Electrochemistry, 2020, 19, 162-167.	2.5	16
166	A Novel Electrochemical Microsensor for Nitric Oxide Based on Electropolymerized Film ofo-Aminobenzaldehyde-ethylene-diamine Nickel. Electroanalysis, 1999, 11, 70-74.	1.5	15
167	Ischemic Postconditioning Recovers Cortex Ascorbic Acid during Ischemia/Reperfusion Monitored with an Online Electrochemical System. ACS Chemical Neuroscience, 2019, 10, 2576-2583.	1.7	15
168	Metal–Organic Framework Membrane Nanopores as Biomimetic Photoresponsive Ion Channels and Photodriven Ion Pumps. Angewandte Chemie, 2020, 132, 12895-12899.	1.6	15
169	One-step synthesis of nitrogen-doped multi-emission carbon dots and their fluorescent sensing in HClO and cellular imaging. Mikrochimica Acta, 2021, 188, 330.	2.5	15
170	In Situ Bioconjugation and Ambient Surface Modification Using Reactive Charged Droplets. Analytical Chemistry, 2015, 87, 3144-3148.	3.2	14
171	Voltage-driven counting of phospholipid vesicles with nanopipettes by resistive-pulse principle. Electrochemistry Communications, 2018, 89, 38-42.	2.3	14
172	Analytical and Quantitative in Vivo Monitoring of Brain Neurochemistry by Electrochemical and Imaging Approaches. ACS Omega, 2018, 3, 13267-13274.	1.6	14
173	Developing chemically modified redox-responsive proteins as smart therapeutics. Chemical Communications, 2019, 55, 5163-5166.	2.2	14
174	In Vivo Activation of Pro-Protein Therapeutics via Chemically Engineered Enzyme Cascade Reaction. CCS Chemistry, 2021, 3, 780-790.	4.6	14
175	Label-Free Resistance Cytometry at the Orifice of a Nanopipette. Analytical Chemistry, 2021, 93, 2942-2949.	3.2	14
176	Recent Advances in Analytical Methodology for in vivo Electrochemistry in Mammals. Electroanalysis, 2016, 28, 265-276.	1.5	13
177	Online electrochemical system as an in vivo method to study dynamic changes of ascorbate in rat brain during 3-methylindole-induced olfactory dysfunction. Analyst, The, 2016, 141, 2199-2207.	1.7	13
178	Neuroprotective effects of MK-801 on auditory cortex in salicylate-induced tinnitus: Involvement of neural activity, glutamate and ascorbate. Hearing Research, 2019, 375, 44-52.	0.9	13
179	In‧itu Encapsulation of Protein into Nanoscale Hydrogenâ€Bonded Organic Frameworks for Intracellular Biocatalysis. Angewandte Chemie, 2021, 133, 22489-22495. 	1.6	13
180	Hierarchical Selfâ€assembly of Discrete Metal–Organic Cages into Supramolecular Nanoparticles for Intracellular Protein Delivery. Angewandte Chemie, 2021, 133, 5489-5495.	1.6	13

#	Article	IF	CITATIONS
181	A New Microfluidic Chipâ€Based Online Electrochemical Platform for Extracellular Neurochemicals Monitoring in Rat Brain. Electroanalysis, 2013, 25, 1010-1016.	1.5	12
182	In Vivo Monitoring of Oxygen Fluctuation Simultaneously at Multiple Sites of Rat Cortex during Spreading Depression. Analytical Chemistry, 2018, 90, 13783-13789.	3.2	12
183	Spatiotemporal Delivery of CRISPR/Cas9 Genome Editing Machinery Using Stimuliâ€Responsive Vehicles. Angewandte Chemie, 2021, 133, 8679-8689.	1.6	12
184	Real-Time Characterization of the Fine Structure and Dynamics of an Electrical Double Layer at Electrode–Electrolyte Interfaces. Journal of Physical Chemistry Letters, 2021, 12, 5279-5285.	2.1	12
185	Dynamic Behavior of Charged Particles at the Nanopipette Orifice. ACS Sensors, 2021, 6, 2330-2338.	4.0	12
186	Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie, 2021, 133, 23970-23976.	1.6	12
187	Integration of Palladium Nanoparticles with Surface Engineered Metal–Organic Frameworks for Cell-Selective Bioorthogonal Catalysis and Protein Activity Regulation. ACS Applied Materials & Interfaces, 2022, 14, 10117-10124.	4.0	12
188	Fluorescence Characterization of Co-immobilization-Induced Multi-Enzyme Aggregation in a Polymer Matrix Using Förster Resonance Energy Transfer (FRET): Toward the Metabolon Biomimic. Biomacromolecules, 2013, 14, 2739-2749.	2.6	11
189	Diazepam reduces excitability of amygdala and further influences auditory cortex following sodium salicylate treatment in rats. Acta Oto-Laryngologica, 2016, 136, 1220-1224.	0.3	11
190	Zwitterionic Polydopamine Engineered Interface for In Vivo Sensing with High Biocompatibility. Angewandte Chemie, 2020, 132, 23651-23655.	1.6	11
191	A Simple and Effective Way to Integrate Nile Blue Covalently onto Functionalized SWCNTs Modified GC Electrodes for Sensitive and Selective Electroanalysis of NADH. Electroanalysis, 2011, 23, 409-416.	1.5	10
192	Electrochemical Quantification of Hygroscopicity of Ionic Liquids with Solutionâ€Dissolved Potassium Ferricyanide as the Redox Probe. Electroanalysis, 2011, 23, 2870-2877.	1.5	10
193	Ferricyanide-backfilled cylindrical carbon fiber microelectrodes for in vivo analysis with high stability and low polarized potential. Analyst, The, 2015, 140, 7154-7159.	1.7	10
194	High‥ield and Damageâ€free Exfoliation of Layered Graphdiyne in Aqueous Phase. Angewandte Chemie, 2019, 131, 756-760.	1.6	10
195	Comparative investigation of small laccase immobilized on carbon nanomaterials for direct bioelectrocatalysis of oxygen reduction. Electrochemistry Communications, 2019, 101, 82-87.	2.3	10
196	Electrochemical Sensing of Ascorbate as an Index of Neuroprotection from Seizure Activity by Physical Exercise in Freely Moving Rats. ACS Sensors, 2021, 6, 546-552.	4.0	10
197	Light-Regulated Nanofluidic Ionic Diodes with Heterogeneous Channels Stemming from Asymmetric Growth of Metal–Organic Frameworks. Analytical Chemistry, 2022, 94, 4328-4334.	3.2	10
198	A Bioinspired Lightâ€Controlled Ionic Switch Based on Nanopipettes. Electroanalysis, 2015, 27, 879-883.	1.5	9

#	Article	IF	CITATIONS
199	Simultaneous in vivo ascorbate and electrophysiological recordings in rat brain following ischemia/reperfusion. Journal of Electroanalytical Chemistry, 2016, 781, 90-96.	1.9	9
200	Singleâ€Carbonâ€Fiberâ€Powered Microsensor for In Vivo Neurochemical Sensing with High Neuronal Compatibility. Angewandte Chemie, 2020, 132, 22841-22847.	1.6	9
201	Nanoscale metal–organic frameworks for the intracellular delivery of CRISPR/Cas9 genome editing machinery. Biomaterials Science, 2021, 9, 7024-7033.	2.6	9
202	Lightâ€Controlled Ionic/Molecular Transport through Solidâ€State Nanopores and Nanochannels. Chemistry - an Asian Journal, 2022, 17, .	1.7	9
203	Highly selective generation of singlet oxygen from dioxygen with atomically dispersed catalysts. Chemical Science, 2022, 13, 5606-5615.	3.7	9
204	Moving MoO ₂ /C Nanospheres with the Functions of Enrichment and Sensing for Online-High-Throughput SERS Detection. Analytical Chemistry, 2022, 94, 7029-7034.	3.2	9
205	Tricarboxylic acid metabolon. Methods in Enzymology, 2019, 617, 29-43.	0.4	8
206	Simultaneous Monitoring of Intracellular Temperature and Norepinephrine Variation by Fluorescent Probes during Norepinephrine Reuptake. Analytical Chemistry, 2021, 93, 14743-14747.	3.2	8
207	Fastâ€Scanning Potentialâ€Gated Organic Electrochemical Transistors for Highly Sensitive Sensing of Dopamine in Living Rat Brain. Angewandte Chemie, 2022, 134, .	1.6	8
208	Water-Stable, Adaptive, and Electroactive Supramolecular Ionic Material and Its Application in Biosensing. ACS Applied Materials & amp; Interfaces, 2014, 6, 5988-5995.	4.0	7
209	Online electrochemical systems for continuous neurochemical measurements with low-potential mediator-based electrochemical biosensors as selective detectors. Analyst, The, 2015, 140, 5039-5047.	1.7	7
210	Synergistic Coordination and Hydrogen Bonding Interaction Modulate the Emission of Iridium Complex for Highly Sensitive Glutamine Imaging in Live Cells. Analytical Chemistry, 2016, 88, 10322-10327.	3.2	7
211	Electrophoretically Sheathed Carbon Fiber Microelectrodes with Metal/Nitrogen/Carbon Electrocatalyst for Electrochemical Monitoring of Oxygen in Vivo. ACS Applied Bio Materials, 2019, 2, 1376-1383.	2.3	7
212	A- and D-type potassium currents regulate axonal action potential repolarization in midbrain dopamine neurons. Neuropharmacology, 2021, 185, 108399.	2.0	7
213	Supportâ€Free PEDOT:PSS Fibers as Multifunctional Microelectrodes for In Vivo Neural Recording and Modulation. Angewandte Chemie, 2022, 134, .	1.6	7
214	Water Adsorption and Transport on Oxidized Twoâ€Đimensional Carbon Materials. Chemistry - A European Journal, 2019, 25, 3969-3978.	1.7	6
215	Electrochemical Sensors Dancing with the Brain. ACS Sensors, 2020, 5, 2659-2660.	4.0	6
216	Selective Capture and in Situ Controllable Detection of <scp>d</scp> -Glucose in Cerebral Systems. Analytical Chemistry, 2020, 92, 4445-4450.	3.2	6

#	Article	IF	CITATIONS
217	Exfoliated graphdiyne for the electroless deposition of Au nanoparticles with high catalytic activity. Analyst, The, 2021, 146, 444-449.	1.7	6
218	Tuning interionic interaction by rationally controlling solution pH for highly selective colorimetric sensing of arginine. Analytical and Bioanalytical Chemistry, 2016, 408, 3005-3012.	1.9	5
219	Age-dependent effects of (+)-MK801 treatment on glutamate release and metabolism in the rat medial prefrontal cortex. Neurochemistry International, 2019, 129, 104503.	1.9	5
220	Nanoskiving fabrication of size-controlled Au nanowire electrodes for electroanalysis. Analyst, The, 2019, 144, 2914-2921.	1.7	5
221	Synthesis and Application of Graphdiyne Oxide-Polyurethane Nanocomposite Yield a Highly Sensitive Non-Enzyme Glucose Sensor. Journal of the Electrochemical Society, 2021, 168, 077520.	1.3	5
222	Tetraphenylethyleneâ€Featured Fluorescent Supramolecular Nanoparticles for Intracellular Trafficking of Protein Delivery and Neuroprotection. Angewandte Chemie, 2021, 133, 26944-26950.	1.6	5
223	Computer-Aided Rational Construction of Mediated Bioelectrocatalysis with π-Conjugated (Hetero)cyclic Molecules: Toward Promoted Distant Electron Tunneling and Improved Biosensing. Analytical Chemistry, 2022, 94, 8033-8040.	3.2	5
224	Insights into Surface Charge of Single Particles at the Orifice of a Nanopipette. Analytical Chemistry, 2022, 94, 8187-8193.	3.2	5
225	Electrochemical sensing of ATP with synthetic cyclophane as recognition element. Science in China Series B: Chemistry, 2009, 52, 741-745.	0.8	4
226	In vivo electrochemical recording of continuous change of magnesium in medial vestibular nucleus following vertigo induced by ice water vestibular stimulation. Science China Chemistry, 2013, 56, 256-261.	4.2	4
227	An Online Electrochemical System for Continuous Measurement of Glutamate with Signal Amplification by Enzymatic Substrate Cycling. Electroanalysis, 2015, 27, 2406-2411.	1.5	4
228	Measurement of intact quantal packet of transmitters released from single nerve terminal by loose-patch amperometry. Biosensors and Bioelectronics, 2021, 181, 113143.	5.3	4
229	On-line electrochemical measurements of cerebral hypoxanthine of freely moving rats. Science in China Series B: Chemistry, 2009, 52, 1677-1682.	0.8	3
230	In Vivo Recording of Ascorbate and Neural Excitability in Medial Vestibular Nucleus and Hippocampus Following Ice Water Vestibular Stimulation in Rats. Electroanalysis, 2018, 30, 1287-1292.	1.5	3
231	Participation of the Anterior Cingulate Cortex in Sodium Salicylate-induced Tinnitus. Otology and Neurotology, 2021, 42, e1134-e1142.	0.7	3
232	Singleâ€Vesicle Electrochemistry Reveals Sex Difference in Vesicular Storage and Release of Catecholamine. Angewandte Chemie, 0, , .	1.6	3
233	Editorial – in vivo analysis. Analyst, The, 2015, 140, 3674-3675.	1.7	2
234	In vivo measurement of the dynamics of norepinephrine in an olfactory bulb following ischemia-induced olfactory dysfunction and its responses to dexamethasone treatment. Analyst, The, 2018, 143, 5247-5254.	1.7	2

#	Article	IF	CITATIONS
235	Role of rare-earth elements in enhancing bioelectrocatalysis for biosensing with NAD ⁺ -dependent glutamate dehydrogenase. Chemical Science, 2021, 12, 13434-13441.	3.7	2
236	Graphdiyne: A new Carbon Allotrope for Electrochemiluminescence. Angewandte Chemie, 0, , .	1.6	2
237	Nanoparticles: Visualization and Quantification of Neurochemicals with Gold Nanoparticles: Opportunities and Challenges (Adv. Mater. 40/2014). Advanced Materials, 2014, 26, 6984-6984.	11.1	1
238	Persistent oppression and simple decompression both exacerbate spinal cord ascorbate levels. International Journal of Medical Sciences, 2020, 17, 1167-1176.	1.1	1
239	Sensor Science in Asia-Pacific (2018–2020). ACS Sensors, 2021, 6, 590-592.	4.0	1
240	DNAzymeâ€Catalyzed Cellular Oxidative Stress Amplification for Proâ€protein Activation in Living Cells. ChemBioChem, 2021, 22, 2608-2613.	1.3	1
241	维生ç´C在脑æŸä¼æ¨¡âž‹ä¸å•化规律的ç"ç©¶èչ›å±•. Chinese Science Bulletin, 2022, , .	0.4	1
242	Frontispiece: Water Adsorption and Transport on Oxidized Twoâ€Đimensional Carbon Materials. Chemistry - A European Journal, 2019, 25, .	1.7	0
243	Will We Ever Publish on Glucose Oxidase?. ACS Sensors, 2019, 4, 3088-3088.	4.0	0
244	Happy 5th Anniversary for ACS Sensors. ACS Sensors, 2020, 5, 1-2.	4.0	0
245	Remembering NJ. ACS Sensors, 2020, 5, 887-888.	4.0	0
246	2021: A Year Starting Full of Hope. ACS Sensors, 2021, 6, 1-2.	4.0	0
247	New Sensing Technologies: Sensors for In Vivo Analysis. , 2021, , .		0
248	Galvanic Redox Potentiometry for <i>In Vivo</i> Sensing. , 2021, , 453-481.		0
249	Sensing Driven by Spontaneous Processes. ACS Sensors, 2021, 6, 3144-3145.	4.0	0
250	Rücktitelbild: Zwitterionic Polydopamine Engineered Interface for In Vivo Sensing with High Biocompatibility (Angew. Chem. 52/2020). Angewandte Chemie, 2020, 132, 24112-24112.	1.6	0