Duilio Cascio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1574218/publications.pdf Version: 2024-02-01

Οιμμο Cascio

#	Article	IF	CITATIONS
1	Cryo-EM structure of RNA-induced tau fibrils reveals a small C-terminal core that may nucleate fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119952119.	7.1	38
2	Prospecting for natural products by genome mining and microcrystal electron diffraction. Nature Chemical Biology, 2021, 17, 872-877.	8.0	31
3	Isolation and X-ray Crystal Structure of an Electrogenerated TEMPO–N ₃ Charge-Transfer Complex. Organic Letters, 2021, 23, 454-458.	4.6	12
4	CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid. Nature Communications, 2020, 11, 4090.	12.8	81
5	Crystal structure of a conformational antibody that binds tau oligomers and inhibits pathological seeding by extracts from donors with Alzheimer's disease. Journal of Biological Chemistry, 2020, 295, 10662-10676.	3.4	21
6	Serial femtosecond crystallography on in vivo-grown crystals drives elucidation of mosquitocidal Cyt1Aa bioactivation cascade. Nature Communications, 2020, 11, 1153.	12.8	31
7	Structure of amyloid-β (20-34) with Alzheimer's-associated isomerization at Asp23 reveals a distinct protofilament interface. Nature Communications, 2019, 10, 3357.	12.8	45
8	Structure-based inhibitors halt prion-like seeding by Alzheimer's disease–and tauopathy–derived brain tissue samples. Journal of Biological Chemistry, 2019, 294, 16451-16464.	3.4	51
9	Characterization of Reactive Organometallic Species via MicroED. ACS Central Science, 2019, 5, 1507-1513.	11.3	39
10	Structure and mechanism of TagA, a novel membrane-associated glycosyltransferase that produces wall teichoic acids in pathogenic bacteria. PLoS Pathogens, 2019, 15, e1007723.	4.7	22
11	Low-cost and portable UV holographic microscope for high-contrast protein crystal imaging. APL Photonics, 2019, 4, 030804.	5.7	11
12	Cooperative DNA binding by proteins through DNA shape complementarity. Nucleic Acids Research, 2019, 47, 8874-8887.	14.5	16
13	Structural basis of 7SK RNA 5′-γ-phosphate methylation and retention by MePCE. Nature Chemical Biology, 2019, 15, 132-140.	8.0	38
14	Homochiral and racemic MicroED structures of a peptide repeat from the ice-nucleation protein InaZ. IUCrJ, 2019, 6, 197-205.	2.2	16
15	Structure-based inhibitors of amyloid beta core suggest a common interface with tau. ELife, 2019, 8, .	6.0	81
16	Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science, 2018, 359, 698-701.	12.6	376
17	Common fibrillar spines of amyloid-β and human islet amyloid polypeptide revealed by microelectron diffraction and structure-based inhibitors. Journal of Biological Chemistry, 2018, 293, 2888-2902.	3.4	50
18	Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp. Nature Structural and Molecular Biology, 2018, 25, 131-134.	8.2	87

DUILIO CASCIO

#	Article	IF	CITATIONS
19	Crystal Structure of Bicc1 SAM Polymer and Mapping of Interactions between the Ciliopathy-Associated Proteins Bicc1, ANKS3, and ANKS6. Structure, 2018, 26, 209-224.e6.	3.3	18
20	Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nature Structural and Molecular Biology, 2018, 25, 311-319.	8.2	89
21	Protein structural biology using cell-free platform from wheat germ. Advanced Structural and Chemical Imaging, 2018, 4, 13.	4.0	21
22	Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nature Structural and Molecular Biology, 2018, 25, 463-471.	8.2	183
23	Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS607-family transposition. ELife, 2018, 7, .	6.0	9
24	Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nature Methods, 2017, 14, 399-402.	19.0	158
25	Crystal structure of Mdm12 and combinatorial reconstitution of Mdm12/Mmm1 ERMES complexes for structural studies. Biochemical and Biophysical Research Communications, 2017, 488, 129-135.	2.1	23
26	Flowâ€eligned, singleâ€shot fiber diffraction using a femtosecond Xâ€ray freeâ€electron laser. Cytoskeleton, 2017, 74, 472-481.	2.0	12
27	Computational design of self-assembling cyclic protein homo-oligomers. Nature Chemistry, 2017, 9, 353-360.	13.6	130
28	Atomic structures of fibrillar segments of hIAPP suggest tightly mated \hat{I}^2 -sheets are important for cytotoxicity. ELife, 2017, 6, .	6.0	95
29	Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal. PLoS ONE, 2016, 11, e0167763.	2.5	20
30	Structure of a putative ClpS Nâ€end rule adaptor protein from the malaria pathogen <scp><i>P</i></scp> <i>lasmodium falciparum</i> . Protein Science, 2016, 25, 689-701.	7.6	20
31	Crystal structure of the toxin Msmeg_6760, the structural homolog ofMycobacterium tuberculosisRv2035, a novel type II toxin involved in the hypoxic response. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 863-869.	0.8	5
32	De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature, 2016, 539, 43-47.	27.8	98
33	Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11232-11236.	7.1	95
34	Accurate design of megadalton-scale two-component icosahedral protein complexes. Science, 2016, 353, 389-394.	12.6	466
35	Engineering an allosteric transcription factor to respond to new ligands. Nature Methods, 2016, 13, 177-183.	19.0	274
36	Crystal Structure and Bioinformatics Inferred Function of Protein A2617 from Methylibium petroleiphilum. FASEB Journal, 2016, 30, 601.9.	0.5	0

DUILIO CASCIO

#	Article	IF	CITATIONS
37	Structural mapping of the <scp>C</scp> lp <scp>B</scp> <scp>ATP</scp> ases of <i>Plasmodium falciparum</i> : Targeting protein folding and secretion for antimalarial drug design. Protein Science, 2015, 24, 1508-1520.	7.6	20
38	Origins of stereoselectivity in evolved ketoreductases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7065-72.	7.1	104
39	Toxicity of Eosinophil MBP Is Repressed by Intracellular Crystallization and Promoted by Extracellular Aggregation. Molecular Cell, 2015, 57, 1011-1021.	9.7	88
40	Uncovering the Mechanism of Aggregation of Human Transthyretin. Journal of Biological Chemistry, 2015, 290, 28932-28943.	3.4	117
41	Structure of <i>Tetrahymena</i> telomerase reveals previously unknown subunits, functions, and interactions. Science, 2015, 350, aab4070.	12.6	134
42	Structure of the toxic core of $\hat{I}\pm$ -synuclein from invisible crystals. Nature, 2015, 525, 486-490.	27.8	528
43	Crystal structure and solution characterization of the thioredoxin-2 from Plasmodium falciparum, a constituent of an essential parasitic protein export complex. Biochemical and Biophysical Research Communications, 2015, 456, 403-409.	2.1	18
44	Inhibition by small-molecule ligands of formation of amyloid fibrils of an immunoglobulin light chain variable domain. ELife, 2015, 4, e10935.	6.0	48
45	Formation of Amyloid Fibers by Monomeric Light Chain Variable Domains. Journal of Biological Chemistry, 2014, 289, 27513-27525.	3.4	37
46	Structure of the methanofuran/methanopterin-biosynthetic enzyme MJ1099 from <i>Methanocaldococcus jannaschii</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1472-1479.	0.8	2
47	Molecular basis for amyloid-β polymorphism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16938-16943.	7.1	383
48	Structure and Proposed Activity of a Member of the VapBC Family of Toxin-Antitoxin Systems. Journal of Biological Chemistry, 2009, 284, 276-283.	3.4	118
49	The Crystal Structure of the Primary Ca2+ Sensor of the Na+/Ca2+ Exchanger Reveals a Novel Ca2+ Binding Motif*. Journal of Biological Chemistry, 2006, 281, 21577-21581.	3.4	107
50	An ancestral nuclear protein assembly: Crystal structure of theMethanopyrus kandlerihistone. Protein Science, 2001, 10, 2002-2007.	7.6	43
51	Crystal Structures of Spin Labeled T4 Lysozyme Mutants:Â Implications for the Interpretation of EPR Spectra in Terms of Structureâ€. Biochemistry, 2000, 39, 8396-8405.	2.5	242
52	Packed protein bilayers in the 0.90 å resolution structure of a designed alpha helical bundle. Protein Science, 1999, 8, 1400-1409.	7.6	34
53	Centrosymmetric bilayers in the 0.75 Ã¥ resolution structure of a designed alphaâ€helical peptide, D, Lâ€Alphaâ€1. Protein Science, 1999, 8, 1410-1422.	7.6	43
54	NarL Dimerization? Suggestive Evidence from a New Crystal Form,. Biochemistry, 1998, 37, 3665-3676.	2.5	70

DUILIO CASCIO

#	Article	IF	CITATIONS
55	Crystal structure of the unactivated ribulose 1, 5â€bisphosphate carboxylase/oxygenase complexed with a transition state analog, 2â€carboxyâ€Dâ€arabinitol 1, 5â€bisphosphate. Protein Science, 1994, 3, 64-69.	7.6	24
56	Crystal structure of activated tobacco rubisco complexed with the reactionâ€intermediate analogue 2â€carboxyâ€arabinitol 1, 5â€bisphosphate. Protein Science, 1993, 2, 1136-1146.	7.6	61
57	Xâ€ray grade crystals of a designed <i>α</i> â€helical coiled coil. Protein Science, 1992, 1, 956-957.	7.6	11
58	Sliding-layer conformational change limited by the quaternary structure of plant RuBisCO. Nature, 1987, 329, 354-356.	27.8	91