Yoav Gilad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1573801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 2008, 18, 1509-1517.	5.5	2,393
2	Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 2010, 464, 768-772.	27.8	1,200
3	Sex-specific genetic architecture of human disease. Nature Reviews Genetics, 2008, 9, 911-922.	16.3	623
4	DNase I sensitivity QTLs are a major determinant of human expression variation. Nature, 2012, 482, 390-394.	27.8	608
5	RNA splicing is a primary link between genetic variation and disease. Science, 2016, 352, 600-604.	12.6	574
6	High-Resolution Mapping of Expression-QTLs Yields Insight into Human Gene Regulation. PLoS Genetics, 2008, 4, e1000214.	3.5	510
7	Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Research, 2011, 21, 447-455.	5.5	501
8	WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nature Methods, 2015, 12, 1061-1063.	19.0	474
9	Revealing the architecture of gene regulation: the promise of eQTL studies. Trends in Genetics, 2008, 24, 408-415.	6.7	463
10	Identification of Genetic Variants That Affect Histone Modifications in Human Cells. Science, 2013, 342, 747-749.	12.6	429
11	Comparative studies of gene expression and the evolution of gene regulation. Nature Reviews Genetics, 2012, 13, 505-516.	16.3	399
12	Impact of regulatory variation from RNA to protein. Science, 2015, 347, 664-667.	12.6	399
13	RNA-seq: impact of RNA degradation on transcript quantification. BMC Biology, 2014, 12, 42.	3.8	366
14	Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature, 2006, 440, 242-245.	27.8	283
15	Batch effects and the effective design of single-cell gene expression studies. Scientific Reports, 2017, 7, 39921.	3.3	275
16	Taxonomic Classification of Bacterial 16S rRNA Genes Using Short Sequencing Reads: Evaluation of Effective Study Designs. PLoS ONE, 2013, 8, e53608.	2.5	273
17	Social environment is associated with gene regulatory variation in the rhesus macaque immune system. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6490-6495.	7.1	257
18	Controls of Nucleosome Positioning in the Human Genome. PLoS Genetics, 2012, 8, e1003036.	3.5	255

#	Article	IF	CITATIONS
19	Methylation QTLs Are Associated with Coordinated Changes in Transcription Factor Binding, Histone Modifications, and Gene Expression Levels. PLoS Genetics, 2014, 10, e1004663.	3.5	255
20	Noisy Splicing Drives mRNA Isoform Diversity in Human Cells. PLoS Genetics, 2010, 6, e1001236.	3.5	254
21	Seasonal Variation in Human Gut Microbiome Composition. PLoS ONE, 2014, 9, e90731.	2.5	246
22	Human specific loss of olfactory receptor genes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3324-3327.	7.1	245
23	ENCODE explained. Nature, 2012, 489, 52-54.	27.8	245
24	Sex-specific and lineage-specific alternative splicing in primates. Genome Research, 2010, 20, 180-189.	5.5	239
25	Deciphering the genetic architecture of variation in the immune response to <i>Mycobacterium tuberculosis</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1204-1209.	7.1	238
26	Genome-Wide Association Studies of the Human Gut Microbiota. PLoS ONE, 2015, 10, e0140301.	2.5	228
27	Different noses for different people. Nature Genetics, 2003, 34, 143-144.	21.4	217
28	Primate Transcript and Protein Expression Levels Evolve Under Compensatory Selection Pressures. Science, 2013, 342, 1100-1104.	12.6	215
29	Mechanisms for Evolving Hypervariability: The Case of Conopeptides. Molecular Biology and Evolution, 2001, 18, 120-131.	8.9	210
30	A Genome-Wide Study of DNA Methylation Patterns and Gene Expression Levels in Multiple Human and Chimpanzee Tissues. PLoS Genetics, 2011, 7, e1001316.	3.5	196
31	Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Research, 2015, 25, 1801-1811.	5.5	195
32	Natural selection on gene expression. Trends in Genetics, 2006, 22, 456-461.	6.7	187
33	The Functional Consequences of Variation in Transcription Factor Binding. PLoS Genetics, 2014, 10, e1004226.	3.5	187
34	Where Are the Disease-Associated eQTLs?. Trends in Genetics, 2021, 37, 109-124.	6.7	163
35	Multi-species microarrays reveal the effect of sequence divergence on gene expression profiles. Genome Research, 2005, 15, 674-680.	5.5	155
36	Comparative RNA sequencing reveals substantial genetic variation in endangered primates. Genome Research, 2012, 22, 602-610.	5.5	145

#	Article	IF	CITATIONS
37	Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Science, 2004, 13, 240-254.	7.6	143
38	Gene Regulation in Primates Evolves under Tissue-Specific Selection Pressures. PLoS Genetics, 2008, 4, e1000271.	3.5	143
39	The Genetic and Mechanistic Basis for Variation in Gene Regulation. PLoS Genetics, 2015, 11, e1004857.	3.5	142
40	Dynamic genetic regulation of gene expression during cellular differentiation. Science, 2019, 364, 1287-1290.	12.6	142
41	Natural Selection on the Olfactory Receptor Gene Family in Humans and Chimpanzees. American Journal of Human Genetics, 2003, 73, 489-501.	6.2	137
42	Genomic-scale capture and sequencing of endogenous DNA from feces. Molecular Ecology, 2010, 19, 5332-5344.	3.9	127
43	The effects of EBV transformation on gene expression levels and methylation profiles. Human Molecular Genetics, 2011, 20, 1643-1652.	2.9	124
44	Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling. ELife, 2016, 5, .	6.0	122
45	A comparison of the human and chimpanzee olfactory receptor gene repertoires. Genome Research, 2005, 15, 224-230.	5.5	120
46	Evolution of Bitter Taste Receptors in Humans and Apes. Molecular Biology and Evolution, 2005, 22, 432-436.	8.9	117
47	Characterizing natural variation using next-generation sequencing technologies. Trends in Genetics, 2009, 25, 463-471.	6.7	116
48	A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. ELife, 2015, 4, e07103.	6.0	114
49	Impact of regulatory variation across human iPSCs and differentiated cells. Genome Research, 2018, 28, 122-131.	5.5	114
50	Absence of the TAP2 Human Recombination Hotspot in Chimpanzees. PLoS Biology, 2004, 2, e155.	5.6	112
51	Genetic Variation, Not Cell Type of Origin, Underlies the Majority of Identifiable Regulatory Differences in iPSCs. PLoS Genetics, 2016, 12, e1005793.	3.5	111
52	Metastasis Suppressors Regulate the Tumor Microenvironment by Blocking Recruitment of Prometastatic Tumor-Associated Macrophages. Cancer Research, 2015, 75, 4063-4073.	0.9	100
53	The genetic architecture of gene expression levels in wild baboons. ELife, 2015, 4, .	6.0	99
54	Functional Comparison of Innate Immune Signaling Pathways in Primates. PLoS Genetics, 2010, 6, e1001249.	3.5	94

#	Article	IF	CITATIONS
55	Determining the genetic basis of anthracycline-cardiotoxicity by molecular response QTL mapping in induced cardiomyocytes. ELife, 2018, 7, .	6.0	94
56	Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nature Genetics, 2000, 26, 221-224.	21.4	92
57	A comparison of gene expression and DNA methylation patterns across tissues and species. Genome Research, 2020, 30, 250-262.	5.5	91
58	A reanalysis of mouse ENCODE comparative gene expression data. F1000Research, 2015, 4, 121.	1.6	91
59	Evidence for positive selection and population structure at the human MAO-A gene. Proceedings of the United States of America, 2002, 99, 862-867.	7.1	90
60	Population Differences in the Human Functional Olfactory Repertoire. Molecular Biology and Evolution, 2003, 20, 307-314.	8.9	90
61	Gene Expression Differences Among Primates Are Associated With Changes in a Histone Epigenetic Modification. Genetics, 2011, 187, 1225-1234.	2.9	89
62	The human olfactory transcriptome. BMC Genomics, 2016, 17, 619.	2.8	87
63	An Evolutionarily Conserved Sexual Signature in the Primate Brain. PLoS Genetics, 2008, 4, e1000100.	3.5	81
64	Systematic Comparison of High-throughput Single-Cell and Single-Nucleus Transcriptomes during Cardiomyocyte Differentiation. Scientific Reports, 2020, 10, 1535.	3.3	74
65	Epigenetic modifications are associated with inter-species gene expression variation in primates. Genome Biology, 2014, 15, 547.	8.8	72
66	Reorganization of 3D genome structure may contribute to gene regulatory evolution in primates. PLoS Genetics, 2019, 15, e1008278.	3.5	71
67	Co-binding by YY1 identifies the transcriptionally active, highly conserved set of CTCF-bound regions in primate genomes. Genome Biology, 2013, 14, R148.	9.6	68
68	Host Genetic Variation Influences Gene Expression Response to Rhinovirus Infection. PLoS Genetics, 2015, 11, e1005111.	3.5	67
69	Mycobacterial infection induces a specific human innate immune response. Scientific Reports, 2015, 5, 16882.	3.3	63
70	Characterizing and inferring quantitative cell cycle phase in single-cell RNA-seq data analysis. Genome Research, 2020, 30, 611-621.	5.5	63
71	Copy Number Variation of CCL3-like Genes Affects Rate of Progression to Simian-AIDS in Rhesus Macaques (Macaca mulatta). PLoS Genetics, 2009, 5, e1000346.	3.5	61
72	Host genetic variation in mucosal immunity pathways influences the upper airway microbiome. Microbiome, 2017, 5, 16.	11.1	61

#	Article	IF	CITATIONS
73	A Signature of Evolutionary Constraint on a Subset of Ectopically Expressed Olfactory Receptor Genes. Molecular Biology and Evolution, 2008, 26, 491-494.	8.9	59
74	A Genome Sequence Resource for the Aye-Aye (Daubentonia madagascariensis), a Nocturnal Lemur from Madagascar. Genome Biology and Evolution, 2012, 4, 126-135.	2.5	59
75	A Comparative Assessment of Human and Chimpanzee iPSC-derived Cardiomyocytes with Primary Heart Tissues. Scientific Reports, 2018, 8, 15312.	3.3	57
76	Discovery and characterization of variance QTLs in human induced pluripotent stem cells. PLoS Genetics, 2019, 15, e1008045.	3.5	56
77	Reducing mitochondrial reads in ATAC-seq using CRISPR/Cas9. Scientific Reports, 2017, 7, 2451.	3.3	51
78	General Olfactory Sensitivity Database (GOSdb): Candidate Genes and their Genomic Variations. Human Mutation, 2013, 34, 32-41.	2.5	47
79	The combination of a genome-wide association study of lymphocyte count and analysis of gene expression data reveals novel asthma candidate genes. Human Molecular Genetics, 2012, 21, 2111-2123.	2.9	46
80	Expression quantitative trait loci detected in cell lines are often present in primary tissues. Human Molecular Genetics, 2009, 18, 4296-4303.	2.9	45
81	Alternative polyadenylation mediates genetic regulation of gene expression. ELife, 2020, 9, .	6.0	45
82	Using DNA microarrays to study natural variation. Current Opinion in Genetics and Development, 2006, 16, 553-558.	3.3	43
83	Social environmental effects on gene regulation. Cellular and Molecular Life Sciences, 2013, 70, 4323-4339.	5.4	42
84	Dynamic effects of genetic variation on gene expression revealed following hypoxic stress in cardiomyocytes. ELife, 2021, 10, .	6.0	41
85	Functional dynamic genetic effects on gene regulation are specific to particular cell types and environmental conditions. ELife, 2021, 10, .	6.0	41
86	A Combination of Genomic Approaches Reveals the Role of FOXO1a in Regulating an Oxidative Stress Response Pathway. PLoS ONE, 2008, 3, e1670.	2.5	41
87	A TAD Skeptic: Is 3D Genome Topology Conserved?. Trends in Genetics, 2021, 37, 216-223.	6.7	40
88	Regulatory element copy number differences shape primate expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12656-12661.	7.1	37
89	msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding. PLoS ONE, 2015, 10, e0138030.	2.5	37
90	Population differences in haplotype structure within a human olfactory receptor gene cluster. Human Molecular Genetics, 2002, 11, 1381-1390.	2.9	35

#	Article	IF	CITATIONS
91	A generally conserved response to hypoxia in iPSC-derived cardiomyocytes from humans and chimpanzees. ELife, 2019, 8, .	6.0	35
92	Mouse–Human Orthology Relationships in an Olfactory Receptor Gene Cluster. Genomics, 2001, 71, 296-306.	2.9	33
93	Cene expression variability in human and chimpanzee populations share common determinants. ELife, 2020, 9, .	6.0	33
94	A comparative study of endoderm differentiation in humans and chimpanzees. Genome Biology, 2018, 19, 162.	8.8	32
95	Identification and characterization of coding single-nucleotide polymorphisms within a human olfactory receptor gene cluster. Gene, 2000, 260, 87-94.	2.2	30
96	Reprogramming LCLs to iPSCs Results in Recovery of Donor-Specific Gene Expression Signature. PLoS Genetics, 2015, 11, e1005216.	3.5	29
97	Single-cell sequencing reveals lineage-specific dynamic genetic regulation of gene expression during human cardiomyocyte differentiation. PLoS Genetics, 2022, 18, e1009666.	3.5	28
98	Silencing of transposable elements may not be a major driver of regulatory evolution in primate iPSCs. ELife, 2018, 7, .	6.0	27
99	Segmental Duplications Contribute to Gene Expression Differences Between Humans and Chimpanzees. Genetics, 2009, 182, 627-630.	2.9	26
100	The Effect of Freeze-Thaw Cycles on Gene Expression Levels in Lymphoblastoid Cell Lines. PLoS ONE, 2014, 9, e107166.	2.5	25
101	Comparative metabolomics in primates reveals the effects of diet and gene regulatory variation on metabolic divergence. Scientific Reports, 2015, 4, 5809.	3.3	24
102	Benchmarking sequencing methods and tools that facilitate the study of alternative polyadenylation. Genome Biology, 2021, 22, 291.	8.8	23
103	Exon-Specific QTLs Skew the Inferred Distribution of Expression QTLs Detected Using Gene Expression Array Data. PLoS ONE, 2012, 7, e30629.	2.5	18
104	Integrated analyses of gene expression and genetic association studies in a founder population. Human Molecular Genetics, 2016, 25, 2104-2112.	2.9	18
105	Cracking the regulatory code. Nature, 2017, 550, 190-191.	27.8	18
106	Prime time for primate functional genomics. Current Opinion in Genetics and Development, 2020, 62, 1-7.	3.3	18
107	Using Reporter Gene Assays to Identify cis Regulatory Differences Between Humans and Chimpanzees. Genetics, 2007, 176, 2069-2076.	2.9	15
108	A Framework for Exploring Functional Variability in Olfactory Receptor Genes. PLoS ONE, 2007, 2, e682.	2.5	15

#	Article	IF	CITATIONS
109	Comparative studies of gene regulatory mechanisms. Current Opinion in Genetics and Development, 2014, 29, 68-74.	3.3	14
110	Gene expression in local stroma reflects breast tumor states and predicts patient outcome. Scientific Reports, 2016, 6, 39240.	3.3	11
111	Divergence in alternative polyadenylation contributes to gene regulatory differences between humans and chimpanzees. ELife, 2021, 10, .	6.0	11
112	Evolutionary insights into primate skeletal gene regulation using a comparative cell culture model. PLoS Genetics, 2022, 18, e1010073.	3.5	10
113	Effective study design for comparative functional genomics. Nature Reviews Genetics, 2020, 21, 385-386.	16.3	9
114	Does a unique olfactory genome imply a unique olfactory world?. Nature Neuroscience, 2014, 17, 6-8.	14.8	8
115	Predicting susceptibility to tuberculosis based on gene expression profiling in dendritic cells. Scientific Reports, 2017, 7, 5702.	3.3	8
116	Human embryoid bodies as a novel system for genomic studies of functionally diverse cell types. ELife, 2022, 11, .	6.0	7
117	Using Genomic Tools to Study Regulatory Evolution. Methods in Molecular Biology, 2012, 856, 335-361.	0.9	6
118	Time-dependent transcriptional profiling links gene expression to mitogen-activated protein kinase kinase 4 (MKK4)-mediated suppression of omental metastatic colonization. Clinical and Experimental Metastasis, 2012, 29, 397-408.	3.3	4
119	A Methodological Assessment and Characterization of Genetically-Driven Variation in Three Human Phosphoproteomes. Scientific Reports, 2018, 8, 12106.	3.3	2
120	Characterizing gene expression in anÂin vitro biomechanical strain model of joint health. F1000Research, 0, 11, 296.	1.6	1