Yoshiki Higuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1573650/publications.pdf

Version: 2024-02-01

124 papers 4,916 citations

33 h-index 98798 67 g-index

127 all docs

127 docs citations

times ranked

127

4184 citing authors

#	Article	IF	Citations
1	Structural and spectroscopic characterization of CO inhibition of [NiFe]-hydrogenase from <i>Citrobacter</i> > Sp. S-77. Acta Crystallographica Section F, Structural Biology Communications, 2022, 78, 66-74.	0.8	O
2	The Challenge of Visualizing the Bridging Hydride at the Active Site and Proton Network of [NiFe]-Hydrogenase by Neutron Crystallography. Topics in Catalysis, 2021, 64, 622-630.	2.8	1
3	Rational design of metal-binding sites in domain-swapped myoglobin dimers. Journal of Inorganic Biochemistry, 2021, 217, 111374.	3.5	4
4	Experimental and theoretical study on converting myoglobin into a stable domain-swapped dimer by utilizing a tight hydrogen bond network at the hinge region. RSC Advances, 2021, 11, 37604-37611.	3.6	2
5	3D domain swapping of azurin from <i>Alcaligenes xylosoxidans</i> . Metallomics, 2020, 12, 337-345.	2.4	5
6	Structural Basis of the Function of [NiFe]-hydrogenases. Chemistry Letters, 2020, 49, 164-173.	1.3	11
7	Thermodynamic Control of Domain Swapping by Modulating the Helical Propensity in the Hinge Region of Myoglobin. Chemistry - an Asian Journal, 2020, 15, 1743-1749.	3.3	5
8	Towards cryogenic neutron crystallography on the reduced form of [NiFe]-hydrogenase. Acta Crystallographica Section D: Structural Biology, 2020, 76, 946-953.	2.3	2
9	Cysteine SH and Glutamate COOH Contributions to [NiFe] Hydrogenase Proton Transfer Revealed by Highly Sensitive FTIR Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 13285-13290.	13.8	31
10	Protein surface charge effect on 3D domain swapping in cells for c-type cytochromes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140265.	2.3	7
11	Cysteine SH and Glutamate COOH Contributions to [NiFe] Hydrogenase Proton Transfer Revealed by Highly Sensitive FTIR Spectroscopy. Angewandte Chemie, 2019, 131, 13419-13424.	2.0	11
12	Structural Changes of the Trinuclear Copper Center in Bilirubin Oxidase upon Reduction. Molecules, 2019, 24, 76.	3.8	3
13	A direct heterotypic interaction between the DIX domains of Dishevelled and Axin mediates signaling to \hat{l}^2 -catenin. Science Signaling, 2019, 12, .	3.6	15
14	New assay method based on Raman spectroscopy for enzymes reacting with gaseous substrates. Protein Science, 2019, 28, 663-670.	7.6	5
15	High-resolution structure of a Y27W mutant of the Dishevelled2 DIX domain. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 116-122.	0.8	6
16	Head-to-Tail Complex of Dishevelled and Axin-DIX Domains: Expression, Purification, Crystallographic Studies and Packing Analysis. Protein and Peptide Letters, 2019, 26, 792-797.	0.9	0
17	Comprehensive reaction mechanisms at and near the Ni–Fe active sites of [NiFe] hydrogenases. Dalton Transactions, 2018, 47, 4408-4423.	3.3	34
18	Construction of a Triangleâ€Shaped Trimer and a Tetrahedron Using an αâ€Helixâ€Inserted Circular Permutant of Cytochrome <i>c</i> ₅₅₅ . Chemistry - an Asian Journal, 2018, 13, 964-967.	3.3	8

#	Article	IF	CITATIONS
19	Redox-dependent conformational changes of a proximal [4Fe–4S] cluster in Hyb-type [NiFe]-hydrogenase to protect the active site from O ₂ . Chemical Communications, 2018, 54, 12385-12388.	4.1	14
20	Complete Genome Sequence of a Moderately Thermophilic Facultative Chemolithoautotrophic Hydrogen-Oxidizing Bacterium, Hydrogenophilus thermoluteolus TH-1. Microbiology Resource Announcements, 2018, 7, .	0.6	8
21	Redox Potentialâ€Dependent Formation of an Unusual His–Trp Bond in Bilirubin Oxidase. Chemistry - A European Journal, 2018, 24, 18052-18058.	3.3	14
22	Direct Participation of a Peripheral Side Chain of a Corrin Ring in Coenzymeâ€B ₁₂ Catalysis. Angewandte Chemie - International Edition, 2018, 57, 7830-7835.	13.8	20
23	Structural basis of the correct subunit assembly, aggregation, and intracellular degradation of nylon hydrolase. Scientific Reports, 2018, 8, 9725.	3.3	7
24	Reactivation of standard [NiFe]-hydrogenase and bioelectrochemical catalysis of proton reduction and hydrogen oxidation in a mediated-electron-transfer system. Bioelectrochemistry, 2018, 123, 156-161.	4.6	22
25	Electrostatic roles in electron transfer from [NiFe] hydrogenase to cytochrome c 3 from Desulfovibrio vulgaris Miyazaki F. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 481-487.	2.3	8
26	Formation and carbon monoxideâ€dependent dissociation of <i>Allochromatium vinosum</i> cytochrome <i>c</i> ′ oligomers using domainâ€swapped dimers. Protein Science, 2017, 26, 464-474.	7.6	13
27	Structural basis for Ccd1 auto-inhibition in the Wnt pathway through homomerization of the DIX domain. Scientific Reports, 2017, 7, 7739.	3.3	6
28	Structural basis of the redox switches in the NAD ⁺ -reducing soluble [NiFe]-hydrogenase. Science, 2017, 357, 928-932.	12.6	46
29	Ni-elimination from the active site of the standard [NiFe]‑hydrogenase upon oxidation by O2. Journal of Inorganic Biochemistry, 2017, 177, 435-437.	3.5	3
30	Equilibrium between inactive ready Ni-SI _r and active Ni-SI _a states of [NiFe] hydrogenase studied by utilizing Ni-SI _r -to-Ni-SI _a photoactivation. Chemical Communications, 2017, 53, 10444-10447.	4.1	11
31	Rational Design of Domainâ€Swappingâ€Based <i>c</i> àê¶ype Cytochrome Heterodimers by Using Chimeric Proteins. ChemBioChem, 2017, 18, 1712-1715.	2.6	11
32	Biochemical, spectroscopic and X-ray structural analysis of deuterated multicopper oxidase CueO prepared from a new expression construct for neutron crystallography. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 788-794.	0.8	2
33	Domain swapping oligomerization of thermostable c-type cytochrome in E. coli cells. Scientific Reports, 2016, 6, 19334.	3.3	13
34	Direct electron transfer-type dual gas diffusion H ₂ /O ₂ biofuel cells. Journal of Materials Chemistry A, 2016, 4, 8742-8749.	10.3	61
35	Photoactivation of the Ni-SI _r state to the Ni-SI _a state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SI _r state and as-isolated enzyme revisited. Physical Chemistry Chemical Physics, 2016, 18, 22025-22030.	2.8	16
36	Exogenous acetate ion reaches the type II copper centre in CueO through the water-excretion channel and potentially affects the enzymatic activity. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 558-563.	0.8	4

3

#	Article	IF	Citations
37	Structure and function of [NiFe] hydrogenases. Journal of Biochemistry, 2016, 160, 251-258.	1.7	92
38	Mutations affecting the internal equilibrium of the reaction catalyzed by 6â€aminohexanoateâ€dimer hydrolase. FEBS Letters, 2016, 590, 3133-3143.	2.8	1
39	Synthesis and Reactivity of a Water-soluble NiRu Monohydride Complex with a Tethered Pyridine Moiety. Chemistry Letters, 2016, 45, 197-199.	1.3	5
40	Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature. Journal of Power Sources, 2016, 335, 105-112.	7.8	67
41	Bioelectrochemical analysis of thermodynamics of the catalytic cycle and kinetics of the oxidative inactivation of oxygen-tolerant [NiFe]-hydrogenase. Journal of Electroanalytical Chemistry, 2016, 766, 152-161.	3.8	17
42	Improved purification, crystallization and crystallographic study of Hyd-2-type [NiFe]-hydrogenase from <i>Citrobacter</i> sp. S-77. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 53-58.	0.8	6
43	Crystal structure of a hypothetical protein, TTHA0829 from Thermus thermophilus HB8, composed of cystathionine- \hat{I}^2 -synthase (CBS) and aspartate-kinase chorismate-mutase tyrA (ACT) domains. Extremophiles, 2016, 20, 275-282.	2.3	4
44	Rational Design of Heterodimeric Protein using Domain Swapping for Myoglobin. Angewandte Chemie - International Edition, 2015, 54, 511-515.	13.8	31
45	FT-IR Characterization of the Light-Induced Ni-L2 and Ni-L3 States of [NiFe] Hydrogenase from <i>Desulfovibrio vulgaris</i> Miyazaki F. Journal of Physical Chemistry B, 2015, 119, 13668-13674.	2.6	28
46	Domain-Swapped Dimer of Pseudomonas aeruginosa Cytochrome c551: Structural Insights into Domain Swapping of Cytochrome c Family Proteins. PLoS ONE, 2015, 10, e0123653.	2.5	19
47	Crystallization and preliminary X-ray analysis of the NAD ⁺ -reducing [NiFe] hydrogenase from <i>Hydrogenophilus thermoluteolus</i> TH-1. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 96-99.	0.8	3
48	Change in structure and ligand binding properties of hyperstable cytochrome <i>c</i> ₅₅₅ from <scp><i>A</i></scp> <i>quifex aeolicus</i> by domain swapping. Protein Science, 2015, 24, 366-375.	7.6	18
49	Structural basis for cargo binding and autoinhibition of Bicaudal-D1 by a parallel coiled-coil with homotypic registry. Biochemical and Biophysical Research Communications, 2015, 460, 451-456.	2.1	43
50	Crystallographic analysis of FAD-dependent glucose dehydrogenase. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1017-1019.	0.8	1
51	Domain-swapped cytochrome cb ₅₆₂ dimer and its nanocage encapsulating a Zn–SO ₄ cluster in the internal cavity. Chemical Science, 2015, 6, 7336-7342.	7.4	37
52	Oligomerization enhancement and two domain swapping mode detection for thermostable cytochrome c ₅₅₂ via the elongation of the major hinge loop. Molecular BioSystems, 2015, 11, 3218-3221.	2.9	15
53	Nanoscale charge transport in cytochromec3/DNA network: Comparative studies between redox-active molecules. Japanese Journal of Applied Physics, 2015, 54, 095201.	1.5	2
54	Structural insights into the O ₂ reduction mechanism of multicopper oxidase. Journal of Biochemistry, 2015, 158, 293-298.	1.7	53

#	Article	IF	CITATIONS
55	"Newton's cradle―proton relay with amide–imidic acid tautomerization in inverting cellulase visualized by neutron crystallography. Science Advances, 2015, 1, e1500263.	10.3	80
56	Refined Regio- and Stereoselective Hydroxylation of <scp>l</scp> -Pipecolic Acid by Protein Engineering of <scp>l</scp> -Proline <i>cis</i> -4-Hydroxylase Based on the X-ray Crystal Structure. ACS Synthetic Biology, 2015, 4, 383-392.	3.8	30
57	Crystallographic characterization of the C-terminal coiled-coil region of mouse Bicaudal-D1 (BICD1). Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1103-1106.	0.8	4
58	Formation of Domain-Swapped Oligomer of Cytochrome <i>c</i> from Its Molten Globule State Oligomer. Biochemistry, 2014, 53, 4696-4703.	2.5	24
59	New insights into the catalytic active-site structure of multicopper oxidases. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 772-779.	2.5	23
60	Light-Driven Hydrogen Production by Hydrogenases and a Ru-Complex inside a Nanoporous Glass Plate under Aerobic External Conditions. Journal of Physical Chemistry Letters, 2014, 5, 2402-2407.	4.6	23
61	Catalytic cycle of cytochrome- c 3 hydrogenase, a [NiFe]-enzyme, deduced from the structures of the enzyme and the enzyme mimic. International Journal of Hydrogen Energy, 2014, 39, 18543-18550.	7.1	9
62	Kinetic Analysis of Inactivation and Enzyme Reaction of Oxygen-Tolerant [NiFe]-Hydrogenase at Direct Electron-Transfer Bioanode. Bulletin of the Chemical Society of Japan, 2014, 87, 1177-1185.	3.2	16
63	Gas-diffusion and Direct-electron-transfer-type Bioanode for Hydrogen Oxidation with Oxygen-tolerant [NiFe]-hydrogenase as an Electrocatalyst. Chemistry Letters, 2014, 43, 1575-1577.	1.3	17
64	Control of the Transition between Niâ€C and Niâ€SI _a States by the Redox State of the Proximal FeS Cluster in the Catalytic Cycle of [NiFe] Hydrogenase. Angewandte Chemie - International Edition, 2014, 53, 13817-13820.	13.8	41
65	Crystal structure of the CueO mutants at Glu506, the key amino acid located in the proton transfer pathway for dioxygen reduction. Biochemical and Biophysical Research Communications, 2013, 438, 686-690.	2.1	10
66	Structural aspects of [NiFe]-hydrogenases. Reviews in Inorganic Chemistry, 2013, 33, 173-192.	4.1	11
67	Formation of Oligomeric Cytochrome <i>c</i> during Folding by Intermolecular Hydrophobic Interaction between N- and C-Terminal α-Helices. Biochemistry, 2013, 52, 8732-8744.	2.5	40
68	Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light. Biochemical and Biophysical Research Communications, 2013, 430, 284-288.	2.1	11
69	Inhibitory activity of Filipendula ulmaria constituents on recombinant human histidine decarboxylase. Food Chemistry, 2013, 138, 1551-1556.	8.2	23
70	Phase-diagram-guided method for growth of a large crystal of glycoside hydrolase family 45 inverting cellulase suitable for neutron structural analysis. Journal of Synchrotron Radiation, 2013, 20, 859-863.	2.4	14
71	Studies on hydrogenase. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2013, 89, 16-33.	3.8	43
72	Crystallization and X-ray diffraction analysis of nylon hydrolase (NylC) fromArthrobactersp. KI72. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1151-1154.	0.7	3

#	Article	IF	Citations
73	Structural Basis for the Reaction Mechanism of S-Carbamoylation of HypE by HypF in the Maturation of [NiFe]-Hydrogenases. Journal of Biological Chemistry, 2012, 287, 28409-28419.	3.4	40
74	Structural Study Reveals That Ser-354 Determines Substrate Specificity on Human Histidine Decarboxylase. Journal of Biological Chemistry, 2012, 287, 29175-29183.	3.4	65
75	Three-dimensional Structure of Nylon Hydrolase and Mechanism of Nylon-6 Hydrolysis. Journal of Biological Chemistry, 2012, 287, 5079-5090.	3.4	48
76	Crystal structure analysis of the translation factor RF3 (release factor 3). FEBS Letters, 2012, 586, 3705-3709.	2.8	30
77	Structural and oxygen binding properties of dimeric horse myoglobin. Dalton Transactions, 2012, 41, 11378.	3.3	47
78	Domain Swapping of the Heme and N-Terminal α-Helix in <i>Hydrogenobacter thermophilus</i> Cytochrome <i>c</i> ₅₅₂ Dimer. Biochemistry, 2012, 51, 8608-8616.	2.5	41
79	Structural and enzymatic characterization of BacD, an <scp>L</scp> â€amino acid dipeptide ligase from <i>Bacillus subtilis</i> . Protein Science, 2012, 21, 707-716.	7.6	30
80	Purification, crystallization and preliminary X-ray analysis of human histidine decarboxylase. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 675-677.	0.7	9
81	An Oâ€Centered Structure of the Trinuclear Copper Center in the Cys500Ser/Glu506Gln Mutant of CueO and Structural Changes in Low to High Xâ€Ray Dose Conditions. Angewandte Chemie - International Edition, 2012, 51, 1861-1864.	13.8	26
82	Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature, 2011, 479, 253-256.	27.8	262
83	Role of π-Electron Systems in Stabilization of the Oxidized Tetraheme Architecture in Cytochrome <i>c</i> 3. Bulletin of the Chemical Society of Japan, 2011, 84, 1096-1101.	3.2	4
84	Positively charged residues located downstream of PIP box, together with TD amino acids within PIP box, are important for CRL4Cdt2-mediated proteolysis. Genes To Cells, 2011, 16, 12-22.	1.2	33
85	How Coenzyme B ₁₂ -Dependent Ethanolamine Ammonia-Lyase Deals with Both Enantiomers of 2-Amino-1-propanol as Substrates: Structure-Based Rationalization,,. Biochemistry, 2011, 50, 591-598.	2.5	15
86	A functional role of the glycosylated N-terminal domain of chondromodulin-I. Journal of Bone and Mineral Metabolism, 2011, 29, 23-30.	2.7	7
87	Crystallographic characterization of the DIX domain of the Wnt signalling positive regulator Ccd1. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 758-761.	0.7	1
88	Crystallization and preliminary X-ray diffraction analysis of membrane-bound respiratory [NiFe] hydrogenase from <i>Hydrogenovibrio marinus</i> Biology Communications, 2011, 67, 827-829.	0.7	5
89	Crystallization and X-ray diffraction analysis of nylon-oligomer hydrolase (NylC) fromAgromycessp. KY5R. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 892-895.	0.7	3
90	Molecular dynamics studies on the mutational structures of a nylon-6 byproduct-degrading enzyme. Chemical Physics Letters, 2011, 507, 157-161.	2.6	12

#	Article	IF	CITATIONS
91	Concerto catalysisâ€"harmonising [NiFe]hydrogenase and NiRu model catalysts. Dalton Transactions, 2010, 39, 2993.	3.3	16
92	Enzymatic synthesis of nylon-6 units in organic solvents containing low concentrations of water. Journal of Molecular Catalysis B: Enzymatic, 2010, 64, 81-88.	1.8	3
93	Crystallization and preliminary X-ray analysis of NADH:rubredoxin oxidoreductase from <i>Clostridium acetobutylicum </i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 23-25.	0.7	2
94	Crystallization and preliminary X-ray studies of ferredoxin-NADP ⁺ oxidoreductase encoded by <i>Bacillus subtilisyumC</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 301-303.	0.7	3
95	Expression, crystallization and preliminary X-ray crystallographic study of ethanolamine ammonia-lyase from <i>Escherichia coli</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 709-711.	0.7	1
96	Purification, crystallization and preliminary X-ray analysis of the dissimilatory sulfite reductase fromDesulfovibrio vulgarisMiyazaki F. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1470-1472.	0.7	0
97	Crystallization and preliminary X-ray analysis of dimeric and trimeric cytochromescfrom horse heart. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1477-1479.	0.7	0
98	Crystal structure analysis of <i>Bacillus subtilis</i> ferredoxinâ€NADP ⁺ oxidoreductase and the structural basis for its substrate selectivity. Protein Science, 2010, 19, 2279-2290.	7.6	25
99	Crystal structure of NADH:rubredoxin oxidoreductase from <i>Clostridium acetobutylicum</i> : A key component of the dioxygen scavenging system in obligatory anaerobes. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1066-1070.	2.6	6
100	The PHCCEx domain of Tiam $1/2$ is a novel protein- and membrane-binding module. EMBO Journal, 2010, 29, 236-250.	7.8	31
101	Cytochrome <i>c</i> polymerization by successive domain swapping at the C-terminal helix. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12854-12859.	7.1	148
102	Crystal Structures of Ethanolamine Ammonia-lyase Complexed with Coenzyme B12 Analogs and Substrates. Journal of Biological Chemistry, 2010, 285, 26484-26493.	3 . 4	87
103	Structure and molecular evolution of multicopper blue proteins. Biomolecular Concepts, 2010, 1, 31-40.	2.2	15
104	X-ray Crystallographic Analysis of the 6-Aminohexanoate Cyclic Dimer Hydrolase. Journal of Biological Chemistry, 2010, 285, 1239-1248.	3.4	38
105	Xâ€ray structure of a twoâ€domain type laccase: A missing link in the evolution of multiâ€copper proteins. FEBS Letters, 2009, 583, 1189-1195.	2.8	53
106	Two alternative modes for optimizing nylonâ€6 byproduct hydrolytic activity from a carboxylesterase with a βâ€lactamase fold: Xâ€ray crystallographic analysis of directly evolved 6â€aminohexanoateâ€dimer hydrolase. Protein Science, 2009, 18, 1662-1673.	7.6	21
107	[NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Dalton Transactions, 2009, , 7577.	3.3	179
108	Crystallization and preliminary X-ray analysis of a class II release factor RF3 from a sulfate-reducing bacterium. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 622-624.	0.7	1

#	Article	IF	Citations
109	Crystal Structure of CO-sensing Transcription Activator CooA Bound to Exogenous Ligand Imidazole. Journal of Molecular Biology, 2007, 367, 864-871.	4.2	35
110	Nylon-oligomer Degrading Enzyme/Substrate Complex: Catalytic Mechanism of 6-Aminohexanoate-dimer Hydrolase. Journal of Molecular Biology, 2007, 370, 142-156.	4.2	53
111	Crystal Structures of Hydrogenase Maturation Protein HypE in the Apo and ATP-bound Forms. Journal of Molecular Biology, 2007, 372, 1045-1054.	4.2	30
112	Crystallization and preliminary X-ray crystallographic studies of the axin DIX domain. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 529-531.	0.7	14
113	The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nature Structural and Molecular Biology, 2007, 14, 484-492.	8.2	365
114	A single-crystal ENDOR and density functional theory study of the oxidized states of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Journal of Biological Inorganic Chemistry, 2006, 11, 41-51.	2.6	103
115	Activation Process of [NiFe] Hydrogenase Elucidated by High-Resolution X-Ray Analyses: Conversion of the Ready to the Unready State. Structure, 2005, 13, 1635-1642.	3.3	248
116	Single Crystal EPR Studies of the Reduced Active Site of [NiFe] Hydrogenase from Desulfovibrio vulgaris Miyazaki F. Journal of the American Chemical Society, 2003, 125, 83-93.	13.7	196
117	Structural Studies of the Carbon Monoxide Complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F:  Suggestion for the Initial Activation Site for Dihydrogen. Journal of the American Chemical Society, 2002, 124, 11628-11635.	13.7	235
118	The presence of a SO molecule in [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki as detected by mass spectrometry. Journal of Inorganic Biochemistry, 2000, 80, 205-211.	3.5	33
119	Structure and Function of [NiFe] Hydrogenase Seibutsu Butsuri, 2000, 40, 249-253.	0.1	0
120	Removal of the bridging ligand atom at the Ni–Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 Šresolution. Structure, 1999, 7, 549-556.	3.3	333
121	Crystal structure of DMA photolyase from Anacystis nidulans. Nature Structural and Molecular Biology, 1997, 4, 887-891.	8.2	196
122	Unusual ligand structure in Ni–Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure, 1997, 5, 1671-1680.	3.3	374
123	Single crystal EPR study of the Ni center of NiFe hydrogenase. Chemical Physics Letters, 1996, 256, 518-524.	2.6	48
124	Single crystals of hydrogenase from Desulfovibrio vulgaris Miyazaki F. Journal of Biological Chemistry, 1987, 262, 2823-5.	3.4	44