
Michael Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/157276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An investigation and evaluation of computer-aided design model complexity metrics. Computer-Aided Design and Applications, 2018, 15, 61-75.	0.6	16
2	A Review of Competencyâ€Based Learning: Tools, Assessments, and Recommendations. Journal of Engineering Education, 2017, 106, 607-638.	3.0	70
3	Adaptive Expertise and its Manifestation in CAD Modeling: A Comparison of Practitioners and Students. , 2015, , 26.155.1.		2
4	Examining the Interaction of Spatial Visualization Ability and Computer-aided Design and Manufacturing Course Performance. , 2015, , 26.707.1.		0
5	Integration of contextual exercises in computer-aided design education. Computer-Aided Design and Applications, 2015, 12, 13-21.	0.6	4
6	A method for assessing required course-related skills and prerequisite structure. European Journal of Engineering Education, 2015, 40, 297-308.	2.3	2
7	Examining Adaptive Expertise: A Novel Comparison of Student and Practicing Engineer CAD Modeling Performance. , 2015, , .		0
8	Multistate Belief Probabilities-Based Prioritization Framework for Customer Satisfaction Attributes in Product Development. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44, 728-743.	9.3	5
9	Analysis of Differences in Nonteaching Factors Influencing Student Evaluation of Teaching between Engineering and Business Classrooms. Decision Sciences Journal of Innovative Education, 2014, 12, 233-265.	0.8	7
10	Analyzing Adaptive Expertise and Contextual Exercise in Computer-Aided Design. Computer-Aided Design and Applications, 2014, 11, 597-607.	0.6	6
11	Extended 3D annotations as a new mechanism to explicitly communicate geometric design intent and increase CAD model reusability. CAD Computer Aided Design, 2014, 57, 61-73.	2.7	54
12	Management of Visual Clutter in Annotated 3D CAD Models: A Comparative Study. Lecture Notes in Computer Science, 2014, , 405-416.	1.3	9
13	A methodology for modelling comprehensive international procurement costs. International Journal of Production Research, 2013, 51, 5549-5564.	7.5	12
14	Effects of Course and Instructor Characteristics on Student Evaluation of Teaching across a College of Engineering. Journal of Engineering Education, 2013, 102, 289-318.	3.0	42
15	A Methodology for Examining the Role of Adaptive Expertise on CAD Modeling. , 2013, , .		1
16	A Methodology for the Comprehensive Assessment of International Procurement Costs. , 2012, , .		0
17	Analyzing the effect of alternative goals and model attributes on CAD model creation and alteration. CAD Computer Aided Design, 2012, 44, 343-353.	2.7	16
18	The importance of product development cycle time and cost in the development of product families. Journal of Engineering Design, 2011, 22, 87-112.	2.3	28

MICHAEL JOHNSON

#	Article	IF	CITATIONS
19	An educational exercise examining the role of model attributes on the creation and alteration of CAD models. Computers and Education, 2011, 57, 1749-1761.	8.3	33
20	Measuring performance of material handling systems: a conveyor system analysis. International Journal of Business Performance and Supply Chain Modelling, 2011, 3, 167.	0.3	1
21	Developing and Assessing Commonality Metrics for Product Families: A Process-Based Cost-Modeling Approach. IEEE Transactions on Engineering Management, 2010, 57, 634-648.	3.5	29
22	Design and Manufacture of a Museum-Grade Children's Indoor Trebuchet by Mechanical Engineering Students. International Journal of Mechanical Engineering Education, 2010, 38, 28-44.	1.0	5
23	Business communication experiences in the US, Mexico, and China. , 2010, , .		Ο
24	Sustainable Distribution Design: Contrasting Disposable, Recyclable, and Reusable Strategies for Packaging Materials Using a Total Cost Analysis With an Illustration of Milk Distribution. , 2010, , .		0
25	Examining the Effects of CAD Model Attributes on Alteration Time and Procedure. , 2010, , .		5
26	Assessing the Effect of Incentive on Computer-Aided Design Intent. , 2009, , .		6
27	Gas Bearing Technology for Oil-Free Microturbomachinery: Research Experience for Undergraduate (REU) Program at Texas A&M University. , 2009, , .		7
28	Quantifying the effects of parts consolidation and development costs on material selection decisions: A process-based costing approach. International Journal of Production Economics, 2009, 119, 174-186.	8.9	47
29	Quantifying the effects of product family decisions on material selection: A process-based costing approach. International Journal of Production Economics, 2009, 120, 653-668.	8.9	32
30	Passive cooling systems for cement-based roofs. Building and Environment, 2009, 44, 1869-1875.	6.9	62
31	A framework for incorporating time, cost, and fidelity trade-offs among design assessment methods in product development. , 2009, , .		Ο
32	Incorporating the Option Value of Product Family Variants in Material and Process Selection. , 2009, , .		1
33	Board 65: Advanced Manufacturing Research Experiences for High School Teachers: Effects on Perception and Understanding of Manufacturing. , 0, , .		Ο
34	Warehouse Workforce Preparedness in the Wake of Industry 4.0: A Systematic Literature Review. , 0, , .		1
35	First Generation Engineering Student Mentoring Program: A Case Study of a Large Engineering School in the U.S , 0, , .		0
36	Workforce Training and Industry 4.0 Adoption in Warehouses at SMEs. , 0, , .		2

Workforce Training and Industry 4.0 Adoption in Warehouses at SMEs. , 0, , . 36

MICHAEL JOHNSON

#	Article	IF	CITATIONS
37	Building Automation and IoT as a Platform for Introducing STEM Education in K-12. , 0, , .		6
38	Analysis of Contextual Computer-aided Design (CAD) Exercises. , 0, , .		1
39	Professional Development Activities for Secondary STEM Teachers and Students' Engineering Content Knowledge and Attitudes. , 0, , .		0
40	Improving the Impact of Experiential Learning Activities through the Assessment of Student Learning Styles. , 0, , .		0
41	Multidisciplinary Engineering Technology: Addressing the Change in Industry Workforce Needs. , 0, , .		0
42	Board 76: Bridging the Workforce Skills Gap in High Value Manufacturing through Continuing Education. , 0, , .		0
43	Enhancing And Assessing Life Long Learning Skills Through Capstone Projects. , O, , .		4
44	Engineering STEM: Using IoT and Energy Management to Build Interest in Engineering at the Secondary Education Level. , 0, , .		0
45	An Examination of the Effects of Contextual Computer-Aided Design Exercises on Student Modeling Performance. , 0, , .		0
46	Exploring Parents' Knowledge and Awareness of Engineering through Middle School Students' Summer Camps. , 0, , .		0
47	Adaptive Learning Environment for High Value Manufacturing (HVM) Geared towards the Energy Industry. , 0, , .		0
48	CAD Model Creation and Alteration: A Comparison Between Students and Practicing Engineers. , 0, , .		0
49	Design, Build And Test: An Approach For A Capstone Design Course In Engineering Technology. , 0, , .		1
50	Assessing the Effects of Authentic Experiential Learning Activities on Teacher Confidence with Engineering Concepts. , 0, , .		0
51	The Use of an Iterative Industry Project in a One Semester Capstone Course. , 0, , .		Ο
52	A Method for Assessing Required Course-related Skills and Prerequisite Structure. , 0, , .		0
53	Design Under Alternative Incentives: Teaching Students The Importance Of Feature Selection And Organization In Cad. , 0, , .		2
54	A Platform Independent Methodology For Teaching Students To Leverage The Power Of Parametric Design Tools. , 0, , .		0

#	Article	IF	CITATIONS
55	A Study of Secondary Teachersâ \in $^{\mathrm{M}}$ Perceptions of Engineers and Conceptions of Engineering. , 0, , .		Ο
56	Assessing an Adaptive Expertise Instrument in Computer-aided Design (CAD) Courses at Two Campuses. , 0, , .		5
57	An Advanced Technological Education Project for High Value Manufacturing: Lessons Learned. , 0, , .		0
58	IoT-based Building Automation and Energy Management. , 0, , .		0
59	Tool Use and Activities of Practicing Engineers over Time: Survey Results. , 0, , .		0
60	Assessing Communications and Teamwork Using Peer and Project Sponsor Feedback in a Capstone Course. , 0, , .		0
61	Conveying The Importance Of Manufacturing Process Design Using Simulation Results And Empirical Data. , 0, , .		1
62	A Student Project Examining Alternative Assessment Methods For Structural Components. , 0, , .		0
63	Board # 64 : Highlighting and Examining the Importance of Authentic Industry Examples in a Workforce Development Certificate Program. , 0, , .		0
64	A Cross-course Design and Manufacturing Project. , 0, , .		0

A Cross-course Design and Manufacturing Project. , 0, , . 64