
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1572192/publications.pdf Version: 2024-02-01

ΜΙΙΙΙΛΜΙ ΡΑΥΛΝ

#	Article	IF	CITATIONS
1	Correlation of age of onset and clinical severity in Niemann–Pick disease type C1 with lysosomal abnormalities and gene expression. Scientific Reports, 2022, 12, 2162.	3.3	3
2	Transcriptome of HPβCD-treated Niemann-Pick disease type C1 cells highlights GPNMB as a biomarker for therapeutics. Human Molecular Genetics, 2021, 30, 2456-2468.	2.9	15
3	Improved systemic AAV gene therapy with a neurotrophic capsid in Niemann–Pick disease type C1 mice. Life Science Alliance, 2021, 4, e202101040.	2.8	6
4	A custom capture sequence approach for oculocutaneous albinism identifies structural variant alleles at the <i>OCA2</i> locus. Human Mutation, 2021, 42, 1239-1253.	2.5	7
5	Melanoma to Vitiligo: The Melanocyte in Biology & Medicine–Joint Montagna Symposium on the Biology of Skin/PanAmerican Society for Pigment Cell Research Annual Meeting. Journal of Investigative Dermatology, 2020, 140, 269-274.	0.7	2
6	NPC1 Deficiency in Mice is Associated with Fetal Growth Restriction, Neonatal Lethality and Abnormal Lung Pathology. Journal of Clinical Medicine, 2020, 9, 12.	2.4	16
7	Maternal immune activation modifies the course of Niemann-pick disease, type C1 in a gender specific manner. Molecular Genetics and Metabolism, 2020, 129, 165-170.	1.1	5
8	Strategic vision for improving human health at The Forefront of Genomics. Nature, 2020, 586, 683-692.	27.8	192
9	Genetic background modifies phenotypic severity and longevity in a mouse model of Niemann-Pick disease type C1. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	17
10	MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells. Epigenetics and Chromatin, 2019, 12, 50.	3.9	12
11	A Metagenomics Study on Hirschsprung's Disease Associated Enterocolitis: Biodiversity and Gut Microbial Homeostasis Depend on Resection Length and Patient's Clinical History. Frontiers in Pediatrics, 2019, 7, 326.	1.9	19
12	Identification of Gene Variants Associated with Melanocyte Stem Cell Differentiation in Mice Predisposed for Hair Graying. G3: Genes, Genomes, Genetics, 2019, 9, 817-827.	1.8	4
13	The Genetics of Human Skin and Hair Pigmentation. Annual Review of Genomics and Human Genetics, 2019, 20, 41-72.	6.2	98
14	Improved disease amelioration with combination therapy for Niemann-Pick disease type C1. Molecular Genetics and Metabolism, 2019, 126, S46.	1.1	0
15	A curated gene list for expanding the horizons of pigmentation biology. Pigment Cell and Melanoma Research, 2019, 32, 348-358.	3.3	72
16	Gene therapy for the treatment of Niemann-Pick disease type C1: Comparison of AAV9 to a novel serotype, AAV-PHP.B. Molecular Genetics and Metabolism, 2018, 123, S36-S37.	1.1	0
17	In Niemann-Pick C1 mouse models, glial-only expression of the normal gene extends survival much further than do changes in genetic background or treatment with hydroxypropyl-beta-cyclodextrin. Gene, 2018, 643, 117-123.	2.2	17
18	Modeling Niemann-Pick disease type C1 in zebrafish: a robust platform for <i>in vivo</i> screening of candidate therapeutic compounds. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	38

#	Article	IF	CITATIONS
19	Cell-type–specific eQTL of primary melanocytes facilitates identification of melanoma susceptibility genes. Genome Research, 2018, 28, 1621-1635.	5.5	67
20	A direct link between MITF, innate immunity, and hair graying. PLoS Biology, 2018, 16, e2003648.	5.6	47
21	Identification and functional analysis of SOX10 phosphorylation sites in melanoma. PLoS ONE, 2018, 13, e0190834.	2.5	24
22	Systemic AAV9 gene therapy improves the lifespan of mice with Niemann-Pick disease, type C1. Human Molecular Genetics, 2017, 26, ddw367.	2.9	50
23	Hypoxiaâ€induced <scp>HIF</scp> 1 <i>α</i> targets in melanocytes reveal a molecular profile associated with poor melanoma prognosis. Pigment Cell and Melanoma Research, 2017, 30, 339-352.	3.3	29
24	Highly Efficient Cpf1-Mediated Gene Targeting in Mice Following High Concentration Pronuclear Injection. G3: Genes, Genomes, Genetics, 2017, 7, 719-722.	1.8	25
25	BRG1 interacts with SOX10 to establish the melanocyte lineage and to promote differentiation. Nucleic Acids Research, 2017, 45, 6442-6458.	14.5	51
26	Loci associated with skin pigmentation identified in African populations. Science, 2017, 358, .	12.6	260
27	Intrathecal 2-hydroxypropyl-β-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1–2 trial. Lancet, The, 2017, 390, 1758-1768.	13.7	275
28	TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genetics, 2017, 13, e1006636.	3.5	78
29	The RhoJ-BAD signaling network: An Achilles' heel for BRAF mutant melanomas. PLoS Genetics, 2017, 13, e1006913.	3.5	20
30	A new glucocerebrosidase deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. DMM Disease Models and Mechanisms, 2016, 9, 769-78.	2.4	20
31	Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature, 2016, 535, 440-443.	27.8	272
32	Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes. Nature Medicine, 2016, 22, 388-396.	30.7	46
33	Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease. PLoS ONE, 2016, 11, e0152007.	2.5	22
34	Rescue of an In Vitro Neuron Phenotype Identified in Niemann-Pick Disease, Type C1 Induced Pluripotent Stem Cell-Derived Neurons by Modulating the WNT Pathway and Calcium Signaling. Stem Cells Translational Medicine, 2015, 4, 230-238.	3.3	48
35	Genomic analysis reveals distinct mechanisms and functional classes of SOX10-regulated genes in melanocytes. Human Molecular Genetics, 2015, 24, 5433-5450.	2.9	34
36	Ectopic differentiation of melanocyte stem cells is influenced by genetic background. Pigment Cell and Melanoma Research, 2015, 28, 223-228.	3.3	7

#	Article	IF	CITATIONS
37	The transcription factors Ets1 and Sox10 interact during murine melanocyte development. Developmental Biology, 2015, 407, 300-312.	2.0	14
38	Axing the cancer loop. Pigment Cell and Melanoma Research, 2014, 27, 691-693.	3.3	1
39	A unique missense allele of BAF155, a core BAF chromatin remodeling complex protein, causes neural tube closure defects in mice. Developmental Neurobiology, 2014, 74, 483-497.	3.0	33
40	Collaborative Development of 2-Hydroxypropyl-β-Cyclodextrin for the Treatment of Niemann-Pick Type C1 Disease. Current Topics in Medicinal Chemistry, 2014, 14, 330-339.	2.1	108
41	The etiology and molecular genetics of human pigmentation disorders. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 379-392.	5.9	44
42	A Polymorphism in IRF4 Affects Human Pigmentation through a Tyrosinase-Dependent MITF/TFAP2A Pathway. Cell, 2013, 155, 1022-1033.	28.9	184
43	SOX10 Ablation Arrests Cell Cycle, Induces Senescence, and Suppresses Melanomagenesis. Cancer Research, 2013, 73, 5709-5718.	0.9	70
44	A somatic cell defect is associated with the onset of neurological symptoms in a lysosomal storage disease. Molecular Genetics and Metabolism, 2013, 110, 188-190.	1.1	7
45	The EJC component Magoh regulates proliferation and expansion of neural crest-derived melanocytes. Developmental Biology, 2013, 375, 172-181.	2.0	36
46	A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors. PLoS Genetics, 2013, 9, e1003644.	3.5	85
47	Mutation of the Diamond-Blackfan Anemia Gene Rps7 in Mouse Results in Morphological and Neuroanatomical Phenotypes. PLoS Genetics, 2013, 9, e1003094.	3.5	47
48	Efficacy of N-acetylcysteine in phenotypic suppression of mouse models of Niemann–Pick disease, type C1. Human Molecular Genetics, 2013, 22, 3508-3523.	2.9	27
49	Î-Tocopherol reduces lipid accumulation in Niemann-Pick type C1 and Wolman cholesterol storage disorders Journal of Biological Chemistry, 2013, 288, 296.	3.4	0
50	Postnatal lineage mapping of follicular melanocytes with the <scp>T</scp> yr:: <scp>C</scp> re <scp>ER^T</scp> ² transgene. Pigment Cell and Melanoma Research, 2013, 26, 269-274.	3.3	10
51	Induction of RET Dependent and Independent Pro-Inflammatory Programs in Human Peripheral Blood Mononuclear Cells from Hirschsprung Patients. PLoS ONE, 2013, 8, e59066.	2.5	24
52	Microarray expression analysis and identification of serum biomarkers for Niemann–Pick disease, type C1. Human Molecular Genetics, 2012, 21, 3632-3646.	2.9	84
53	δ-Tocopherol Reduces Lipid Accumulation in Niemann-Pick Type C1 and Wolman Cholesterol Storage Disorders. Journal of Biological Chemistry, 2012, 287, 39349-39360.	3.4	107
54	Plasma and Tissue Concentrations of α-Tocopherol and δ-Tocopherol Following High Dose Dietary Supplementation in Mice. Nutrients, 2012, 4, 467-490.	4.1	20

#	Article	IF	CITATIONS
55	Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes. Genome Research, 2012, 22, 2290-2301.	5.5	64
56	Specification of neural crest into sensory neuron and melanocyte lineages. Developmental Biology, 2012, 366, 55-63.	2.0	56
57	The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment Cell and Melanoma Research, 2011, 24, 879-897.	3.3	225
58	SOX10 directly modulates ERBB3 transcription via an intronic neural crest enhancer. BMC Developmental Biology, 2011, 11, 40.	2.1	51
59	The pleiotropic mouse phenotype extraâ€toes spotting is caused by translation initiation factor <i>Eif3c</i> mutations and is associated with disrupted sonic hedgehog signaling. FASEB Journal, 2011, 25, 1596-1605.	0.5	11
60	Linear clinical progression, independent of age of onset, in Niemann–Pick disease, type C. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 132-140.	1.7	145
61	The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nature Neuroscience, 2010, 13, 551-558.	14.8	156
62	A curated online resource for SOX10 and pigment cell molecular genetic pathways. Database: the Journal of Biological Databases and Curation, 2010, 2010, baq025-baq025.	3.0	8
63	Sox proteins in melanocyte development and melanoma. Pigment Cell and Melanoma Research, 2010, 23, 496-513.	3.3	138
64	Oxidative stress in Niemann–Pick disease, type C. Molecular Genetics and Metabolism, 2010, 101, 214-218.	1.1	113
65	A Rare Myelin Protein Zero (MPZ) Variant Alters Enhancer Activity In Vitro and In Vivo. PLoS ONE, 2010, 5, e14346.	2.5	14
66	Oligodendroglial and panâ€neural crest expression of Cre recombinase directed by <i>Sox10</i> enhancer. Genesis, 2009, 47, 765-770.	1.6	21
67	Networks and pathways in pigmentation, health, and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, 1, 359-371.	6.6	23
68	<i>Gpnmb</i> is a melanoblastâ€expressed, MITFâ€dependent gene. Pigment Cell and Melanoma Research, 2009, 22, 99-110.	3.3	51
69	Frequent mutations in the MITF pathway in melanoma. Pigment Cell and Melanoma Research, 2009, 22, 435-444.	3.3	132
70	Comparison of melanoblast expression patterns identifies distinct classes of genes. Pigment Cell and Melanoma Research, 2009, 22, 611-622.	3.3	16
71	NRG1 / ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation. Pigment Cell and Melanoma Research, 2009, 22, 773-784.	3.3	70
72	Genomic copy number and expression variation within the C57BL/6J inbred mouse strain. Genome Research, 2008, 18, 60-66.	5.5	100

#	Article	IF	CITATIONS
73	An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10. BMC Developmental Biology, 2008, 8, 105.	2.1	99
74	Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf?. Cell Research, 2008, 18, 1163-1176.	12.0	168
75	A sensitized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy. Human Molecular Genetics, 2008, 17, 2118-2131.	2.9	53
76	A Sox10 Expression Screen Identifies an Amino Acid Essential for Erbb3 Function. PLoS Genetics, 2008, 4, e1000177.	3.5	20
77	The Secreted Metalloprotease ADAMTS20 Is Required for Melanoblast Survival. PLoS Genetics, 2008, 4, e1000003.	3.5	102
78	Identification of Neural Crest and Glial Enhancers at the Mouse Sox10 Locus through Transgenesis in Zebrafish. PLoS Genetics, 2008, 4, e1000174.	3.5	99
79	Analysis of Ocular Hypopigmentation in <i>Rab38</i> ^{<i>cht/cht</i>} Mice. , 2007, 48, 3905.		31
80	Stem cells of the melanocyte lineage. Cancer Biomarkers, 2007, 3, 203-209.	1.7	23
81	A mouse model of Waardenburg syndrome type IV resulting from an ENU-induced mutation in endothelin 3. Pigment Cell & Melanoma Research, 2007, 20, 210-215.	3.6	8
82	Informatic and genomic analysis of melanocyte cDNA libraries as a resource for the study of melanocyte development and function. Pigment Cell & Melanoma Research, 2007, 20, 201-209.	3.6	3
83	Deletion of long-range sequences at Sox10 compromises developmental expression in a mouse model of Waardenburg–Shah (WS4) syndrome. Human Molecular Genetics, 2006, 15, 259-271.	2.9	60
84	Mutations in TRIOBP, Which Encodes a Putative Cytoskeletal-Organizing Protein, Are Associated with Nonsyndromic Recessive Deafness. American Journal of Human Genetics, 2006, 78, 137-143.	6.2	93
85	Genetic evidence does not support direct regulation of EDNRB by SOX10 in migratory neural crest and the melanocyte lineage. Mechanisms of Development, 2006, 123, 124-134.	1.7	23
86	Interspecies difference in the regulation of melanocyte development by SOX10 and MITF. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9081-9085.	7.1	117
87	The Genetic Regulation of Pigment Cell Development. , 2006, 589, 155-169.		28
88	The Origin and Development of Neural Crest-Derived Melanocytes. , 2006, , 3-26.		5
89	WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action. Pigment Cell & Melanoma Research, 2005, 18, 167-180.	3.6	76
90	Acinar Cell Apoptosis in Serpini2-Deficient Mice Models Pancreatic Insufficiency. PLoS Genetics, 2005, 1, e38.	3.5	20

WILLIAM J PAVAN

#	Article	IF	CITATIONS
91	Cell-autonomous and cell non-autonomous signaling through endothelin receptor B during melanocyte development. Development (Cambridge), 2004, 131, 3239-3247.	2.5	62
92	Spotlight on Spotted Mice: A Review of White Spotting Mouse Mutants and Associated Human Pigmentation Disorders. Pigment Cell & Melanoma Research, 2004, 17, 215-224.	3.6	91
93	Direct Interaction of Sox10 with the Promoter of Murine Dopachrome Tautomerase (Dct) and Synergistic Activation of Dct Expression with Mitf. Pigment Cell & Melanoma Research, 2004, 17, 352-362.	3.6	89
94	Complementation of melanocyte development in SOX10 mutant neural crest using lineage-directed gene transfer. Developmental Dynamics, 2004, 229, 54-62.	1.8	17
95	Pmel17 expression is Mitf-dependent and reveals cranial melanoblast migration during murine development. Gene Expression Patterns, 2003, 3, 703-707.	0.8	79
96	The importance of having your SOX on: role of SOX10†in the development of neural crest-derived melanocytes and glia. Oncogene, 2003, 22, 3024-3034.	5.9	192
97	Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nature Genetics, 2003, 34, 108-112.	21.4	260
98	Targeting a Complex Transcriptome: The Construction of the Mouse Full-Length cDNA Encyclopedia. Genome Research, 2003, 13, 1273-1289.	5.5	154
99	Human Disease Genes and Their Cloned Mouse Orthologs: Exploration of the FANTOM2 cDNA Sequence Data Set. Genome Research, 2003, 13, 1496-1500.	5.5	7
100	A defect in a novel ADAMTS family member is the cause of the belted white-spotting mutation. Development (Cambridge), 2003, 130, 4665-4672.	2.5	80
101	Mutation of melanosome protein RAB38 in chocolate mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4471-4476.	7.1	155
102	Rescue of neurodegeneration in Niemann-Pick C mice by a prion-promoter-driven Npc1 cDNA transgene. Human Molecular Genetics, 2002, 11, 3107-3114.	2.9	73
103	The oculocutaneous albinism type IV gene Matp is a new marker of pigment cell precursors during mouse embryonic development. Mechanisms of Development, 2002, 116, 209-212.	1.7	30
104	Analysis of SOX10 Function in Neural Crest-Derived Melanocyte Development: SOX10-Dependent Transcriptional Control of Dopachrome Tautomerase. Developmental Biology, 2001, 237, 245-257.	2.0	169
105	Purification and Characterization of YACs Containing Large Inserts. , 2001, Chapter 5, Unit 5.7.		0
106	The Use of Expression Profiling to Study Pigment Cell Biology and Dysfunction. Pigment Cell & Melanoma Research, 2000, 13, 141-146.	3.6	15
107	Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Human Genetics, 2000, 107, 1-6.	3.8	92
108	Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Human Genetics, 2000, 107, 1-6.	3.8	323

#	Article	IF	CITATIONS
109	Hepatocyte Growth Factor/Scatter Factor-MET Signaling in Neural Crest-Derived Melanocyte Development. Pigment Cell & Melanoma Research, 1999, 12, 13-21.	3.6	79
110	Isolation, genomic organization, and expression analysis of Men1, the murine homolog of the MEN1 gene. Mammalian Genome, 1999, 10, 592-596.	2.2	62
111	Comparative analyses of the Dominant megacolon-SOX10 genomic interval in mouse and human. Mammalian Genome, 1999, 10, 744-749.	2.2	15
112	The <i>Sox10^{Dom}</i> Mouse: Modeling the Genetic Variation of Waardenburg-Shah (WS4) Syndrome. Genome Research, 1999, 9, 215-225.	5.5	127
113	SOX10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nature Genetics, 1998, 18, 60-64.	21.4	702
114	Cloning and tissue expression of the mouse ortholog of AIM1, a βγ-crystallin superfamily member. Mammalian Genome, 1998, 9, 715-720.	2.2	19
115	Endothelin signalling in the development of neural crest-derived melanocytes. Biochemistry and Cell Biology, 1998, 76, 1093-1099.	2.0	62
116	Genomic Organization of the Murine Miller–Dieker/Lissencephaly Region: Conservation of Linkage with the Human Region. Genome Research, 1997, 7, 625-634.	5.5	26
117	Niemann-Pick C1 Disease Gene: Homology to Mediators of Cholesterol Homeostasis. Science, 1997, 277, 228-231.	12.6	1,373
118	Murine Model of Niemann-Pick C Disease: Mutation in a Cholesterol Homeostasis Gene. Science, 1997, 277, 232-235.	12.6	766
119	Localization of a neural crest transcription factor, Slug, to mouse Chromosome 16 and human Chromosome 8. Mammalian Genome, 1997, 8, 872-873.	2.2	13
120	[49] Yeast artificial chromosome modification and manipulation. Methods in Enzymology, 1992, 216, 584-603.	1.0	18
121	High-efficiency yeast artificial chromosome fragmentation vectors. Gene, 1991, 106, 125-127.	2.2	51
122	Modification and manipulation of mammalian DNA cloned as YACs. Gene Analysis Techniques, 1990, 7, 107-113.	1.0	11
123	The mouse neurological mutant weaver maps within the region of chromosome 16 that is homologous to human chromosome 21. Genomics, 1989, 5, 522-526.	2.9	66