
Karolina Pircs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1572174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development. Cell Stem Cell, 2022, 29, 52-69.e8.	11.1	37
2	SnapShot: Human endogenous retroviruses. Cell, 2022, 185, 400-400.e1.	28.9	10
3	Distinct subcellular autophagy impairments in induced neurons from patients with Huntington's disease. Brain, 2022, 145, 3035-3057.	7.6	19
4	CRISPRi-mediated transcriptional silencing in iPSCs for the study of human brain development. STAR Protocols, 2022, 3, 101285.	1.2	0
5	Hunting out the autophagic problem in Huntington disease. Autophagy, 2022, 18, 3031-3032.	9.1	2
6	Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia. Molecular Psychiatry, 2022, 27, 3247-3261.	7.9	9
7	Impact of differential and time-dependent autophagy activation on therapeutic efficacy in a model of Huntington disease. Autophagy, 2021, 17, 1316-1329.	9.1	23
8	Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons. Immunity, 2021, 54, 225-234.e6.	14.3	91
9	Activation of endogenous retroviruses during brain development causes an inflammatory response. EMBO Journal, 2021, 40, e106423.	7.8	38
10	VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nature Communications, 2021, 12, 2431.	12.8	20
11	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O	verlock 10) Tf 50 342 T 1,430 42 T
12	Modulation of epileptogenesis: A paradigm for the integration of enzyme-based microelectrode arrays and optogenetics. Epilepsy Research, 2020, 159, 106244.	1.6	7
13	Transposable Elements: A Common Feature of Neurodevelopmental and Neurodegenerative Disorders. Trends in Genetics, 2020, 36, 610-623.	6.7	64
14	Profiling of lincRNAs in human pluripotent stem cell derived forebrain neural progenitor cells. Heliyon, 2020, 6, e03067.	3.2	13
15	Driving Neuronal Differentiation through Reversal of an ERK1/2-miR-124-SOX9 Axis Abrogates Glioblastoma Aggressiveness. Cell Reports, 2019, 28, 2064-2079.e11.	6.4	37
16	Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nature Communications, 2019, 10, 3182.	12.8	76
17	LINE-2 transposable elements are a source of functional human microRNAs and target sites. PLoS Genetics, 2019, 15, e1008036.	3.5	44
18	TRIM28 and the control of transposable elements in the brain. Brain Research, 2019, 1705, 43-47.	2.2	28

KAROLINA PIRCS

#	Article	IF	CITATIONS
19	Simple Generation of a High Yield Culture of Induced Neurons from Human Adult Skin Fibroblasts. Journal of Visualized Experiments, 2018, , .	0.3	16
20	Identifying miRNA Targets Using AGO-RIPseq. Methods in Molecular Biology, 2018, 1720, 131-140.	0.9	12
21	Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis. Cell Systems, 2018, 7, 438-452.e8.	6.2	41
22	Crosstalk between MicroRNAs and Autophagy in Adult Neurogenesis: Implications for Neurodegenerative Disorders. Brain Plasticity, 2018, 3, 195-203.	3.5	8
23	Huntingtin Aggregation Impairs Autophagy, Leading to Argonaute-2 Accumulation and Global MicroRNA Dysregulation. Cell Reports, 2018, 24, 1397-1406.	6.4	66
24	letâ€7 regulates radial migration of newâ€born neurons through positive regulation of autophagy. EMBO Journal, 2017, 36, 1379-1391.	7.8	60
25	TRIM28 Controls a Gene Regulatory Network Based on Endogenous Retroviruses in Human Neural Progenitor Cells. Cell Reports, 2017, 18, 1-11.	6.4	87
26	A new approach for ratiometric in vivo calcium imaging of microglia. Scientific Reports, 2017, 7, 6030.	3.3	55
27	REST suppression mediates neural conversion of adult human fibroblasts via microRNAâ€dependent and â€independent pathways. EMBO Molecular Medicine, 2017, 9, 1117-1131.	6.9	87
28	Direct Neuronal Reprogramming for Disease Modeling Studies Using Patient-Derived Neurons: What Have We Learned?. Frontiers in Neuroscience, 2017, 11, 530.	2.8	48
29	Distinct cognitive effects and underlying transcriptome changes upon inhibition of individual miRNAs in hippocampal neurons. Scientific Reports, 2016, 6, 19879.	3.3	41
30	Identification of the miRNA targetome in hippocampal neurons using RIP-seq. Scientific Reports, 2015, 5, 12609.	3.3	29
31	Loss of Drosophila Vps16A enhances autophagosome formation through reduced Tor activity. Autophagy, 2015, 11, 1209-1215.	9.1	11
32	TRIM28 Represses Transcription of Endogenous Retroviruses in Neural Progenitor Cells. Cell Reports, 2015, 10, 20-28.	6.4	112
33	Monosynaptic Tracing using Modified Rabies Virus Reveals Early and Extensive Circuit Integration of Human Embryonic Stem Cell-Derived Neurons. Stem Cell Reports, 2015, 4, 975-983.	4.8	92
34	Comprehensive analysis of microRNA expression in regionalized human neural progenitor cells reveals microRNA-10 as a caudalizing factor. Development (Cambridge), 2015, 142, 3166-3177.	2.5	34
35	microRNA-125 distinguishes developmentally generated and adult-born olfactory bulb interneurons. Development (Cambridge), 2014, 141, 1580-1588.	2.5	34
36	microRNA distinguishes temporally different populations of olfactory bulb interneurons. Neurogenesis (Austin, Tex), 2014, 1, e29744.	1.5	0

KAROLINA PIRCS

#	Article	IF	CITATIONS
37	Direct Neural Conversion from Human Fibroblasts Using Self-Regulating and Nonintegrating Viral Vectors. Cell Reports, 2014, 9, 1673-1680.	6.4	36
38	Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in <i>Drosophila</i> . Molecular Biology of the Cell, 2014, 25, 1338-1354.	2.1	247
39	Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in <i>Drosophila</i> . Autophagy, 2014, 10, 453-467.	9.1	75
40	Different effects of <i>Atg2</i> and <i>Atg18</i> mutations on Atg8a and Atg9 trafficking during starvation in Drosophila. FEBS Letters, 2014, 588, 408-413.	2.8	46
41	miRNAs in brain development. Experimental Cell Research, 2014, 321, 84-89.	2.6	104
42	MicroRNAs as Neuronal Fate Determinants. Neuroscientist, 2014, 20, 235-242.	3.5	54
43	Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila. BMC Cell Biology, 2013, 14, 29.	3.0	53
44	Myc-Driven Overgrowth Requires Unfolded Protein Response-Mediated Induction of Autophagy and Antioxidant Responses in Drosophila melanogaster. PLoS Genetics, 2013, 9, e1003664.	3.5	81
45	Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in <i>Drosophila</i> . Journal of Cell Biology, 2013, 201, 531-539.	5.2	307
46	TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proceedings of the United States of America, 2013, 110, E1817-26.	7.1	600
47	Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila. Autophagy, 2012, 8, 1124-1135.	9.1	52
48	Functional Studies of microRNAs in Neural Stem Cells: Problems and Perspectives. Frontiers in Neuroscience, 2012, 6, 14.	2.8	27
49	MicroRNA-124 Is a Subventricular Zone Neuronal Fate Determinant. Journal of Neuroscience, 2012, 32, 8879-8889.	3.6	191
50	Advantages and Limitations of Different p62-Based Assays for Estimating Autophagic Activity in Drosophila. PLoS ONE, 2012, 7, e44214.	2.5	145
51	In Embryonic Stem Cells, ZFP57/KAP1 Recognize a Methylated Hexanucleotide to Affect Chromatin and DNA Methylation of Imprinting Control Regions. Molecular Cell, 2011, 44, 361-372.	9.7	503
52	Direct conversion of human fibroblasts to dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10343-10348.	7.1	695
53	KAP1 controls endogenous retroviruses in embryonic stem cells. Nature, 2010, 463, 237-240.	27.8	677
54	Tracking differentiating neural progenitors in pluripotent cultures using microRNA-regulated lentiviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11602-11607.	7.1	42

KAROLINA PIRCS

#	Article	IF	CITATIONS
55	KAP1-Mediated Epigenetic Repression in the Forebrain Modulates Behavioral Vulnerability to Stress. Neuron, 2008, 60, 818-831.	8.1	110
56	The Krüppel-associated Box Repressor Domain Can Trigger de Novo Promoter Methylation during Mouse Early Embryogenesis. Journal of Biological Chemistry, 2007, 282, 34535-34541.	3.4	101
57	Lentiviral Vectors for Use in the Central Nervous System. Molecular Therapy, 2006, 13, 484-493.	8.2	111
58	Evidence for disease-regulated transgene expression in the brain with use of lentiviral vectors. Journal of Neuroscience Research, 2006, 84, 58-67.	2.9	14
59	Lesion-dependent regulation of transgene expression in the rat brain using a human glial fibrillary acidic protein-lentiviral vector. European Journal of Neuroscience, 2004, 19, 761-765.	2.6	24
60	Regulated Delivery of Glial Cell Line-Derived Neurotrophic Factor into Rat Striatum, Using a Tetracycline-Dependent Lentiviral Vector. Human Gene Therapy, 2004, 15, 934-944.	2.7	96
61	Dynamics of transgene expression in a neural stem cell line transduced with lentiviral vectors incorporating the cHS4 insulator. Experimental Cell Research, 2004, 298, 611-623.	2.6	36
62	Targeted transgene expression in rat brain using lentiviral vectors. Journal of Neuroscience Research, 2003, 73, 876-885.	2.9	153