
## MÃ;rio M EspÃ-rito-Santo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1568675/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biomass resilience of Neotropical secondary forests. Nature, 2016, 530, 211-214.                                                                                                                                                | 27.8 | 763       |
| 2  | Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.<br>Science Advances, 2016, 2, e1501639.                                                                                      | 10.3 | 423       |
| 3  | Biodiversity recovery of Neotropical secondary forests. Science Advances, 2019, 5, eaau3114.                                                                                                                                    | 10.3 | 291       |
| 4  | Succession and management of tropical dry forests in the Americas: Review and new perspectives.<br>Forest Ecology and Management, 2009, 258, 1014-1024.                                                                         | 3.2  | 260       |
| 5  | Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376.                                                                                                                                                       | 12.6 | 165       |
| 6  | Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecology, 2009, 201, 291-304.                                                                        | 1.6  | 130       |
| 7  | Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology and Evolution, 2019, 3, 928-934.                                                                        | 7.8  | 120       |
| 8  | Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology and Evolution, 2018, 2, 1104-1111.                                                                                            | 7.8  | 107       |
| 9  | Sexual Differences in Reproductive Phenology and their Consequences for the Demography of<br>Baccharis dracunculifolia (Asteraceae), a Dioecious Tropical Shrub. Annals of Botany, 2003, 91, 13-19.                             | 2.9  | 90        |
| 10 | The role of tropical dry forests for biodiversity, carbon and water conservation in the neotropics:<br>lessons learned and opportunities for its sustainable management. Regional Environmental Change,<br>2015, 15, 1039-1049. | 2.9  | 90        |
| 11 | Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia, 2007, 153, 353-364.                                                                                   | 2.0  | 83        |
| 12 | Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological<br>Conservation, 2021, 260, 108849.                                                                                         | 4.1  | 71        |
| 13 | Insect Herbivores and Leaf Damage along Successional and Vertical Gradients in a Tropical Dry Forest.<br>Biotropica, 2014, 46, 14-24.                                                                                           | 1.6  | 62        |
| 14 | Canopy Herbivory and Insect Herbivore Diversity in a Dry Forest–Savanna Transition in Brazil.<br>Biotropica, 2010, 42, 112-118.                                                                                                 | 1.6  | 56        |
| 15 | Successional and Seasonal Changes in a Community of Dung Beetles (Coleoptera: Scarabaeinae) in a<br>Brazilian Tropical Dry Forest. Natureza A Conservacao, 2010, 08, 160-164.                                                   | 2.5  | 51        |
| 16 | Sustainability of tropical dry forests: Two case studies in southeastern and central Brazil. Forest<br>Ecology and Management, 2009, 258, 922-930.                                                                              | 3.2  | 50        |
| 17 | Protected areas and territorial exclusion of traditional communities: analyzing the social impacts of environmental compensation strategies in Brazil. Ecology and Society, 2018, 23, .                                         | 2.3  | 48        |
| 18 | Abundance of Neopelma baccharidis (Homoptera: Psyllidae) Galls on the Dioecious Shrub Baccharis<br>dracunculifolia (Asteraceae). Environmental Entomology, 1998, 27, 870-876.                                                   | 1.4  | 47        |

## MÃIRIO M ESPÃRITO-SANTO

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Changes in tree phenology along natural regeneration in a seasonally dry tropical forest. Plant<br>Biosystems, 2014, 148, 965-974.                                                                                     | 1.6 | 45        |
| 20 | Leaf traits and herbivory on deciduous and evergreen trees in a tropical dry forest. Basic and Applied Ecology, 2015, 16, 210-219.                                                                                     | 2.7 | 45        |
| 21 | Litterfall dynamics along a successional gradient in a Brazilian tropical dry forest. Forest<br>Ecosystems, 2019, 6, .                                                                                                 | 3.1 | 41        |
| 22 | Understanding patterns of land-cover change in the Brazilian Cerrado from 2000 to 2015.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150435.                                | 4.0 | 40        |
| 23 | Tropical dry forest succession and the contribution of lianas to wood area index (WAI). Forest<br>Ecology and Management, 2009, 258, 941-948.                                                                          | 3.2 | 38        |
| 24 | Herbivory on Handroanthus ochraceus (Bignoniaceae) along a successional gradient in a tropical dry<br>forest. Arthropod-Plant Interactions, 2012, 6, 45-57.                                                            | 1.1 | 36        |
| 25 | Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology<br>along a successional gradient using optical phenology towers. Environmental Research Letters, 2017,<br>12, 105007. | 5.2 | 35        |
| 26 | Functional recovery of secondary tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                                                                       | 7.1 | 34        |
| 27 | Species Diversity and Abundance of Vascular Epiphytes on Vellozia piresiana in Brazil1. Biotropica,<br>2002, 34, 51-57.                                                                                                | 1.6 | 33        |
| 28 | Land use policies and deforestation in Brazilian tropical dry forests between 2000 and 2015.<br>Environmental Research Letters, 2018, 13, 035008.                                                                      | 5.2 | 31        |
| 29 | Assessing ecosystem services in Neotropical dry forests: a systematic review. Environmental<br>Conservation, 2017, 44, 34-43.                                                                                          | 1.3 | 30        |
| 30 | Plant Phenology and Absence of Sex-Biased Gall Attack on Three Species of Baccharis. PLoS ONE, 2012,<br>7, e46896.                                                                                                     | 2.5 | 28        |
| 31 | Host plant effects on the development and survivorship of the galling insect Neopelma baccharidis<br>(Homoptera: Psyllidae). Austral Ecology, 2002, 27, 249-257.                                                       | 1.5 | 24        |
| 32 | Parasitoid attack and its consequences to the development of the galling psyllid Baccharopelma<br>dracunculifoliae. Basic and Applied Ecology, 2004, 5, 475-484.                                                       | 2.7 | 24        |
| 33 | Gall-inducing jumping plant-lice of the Neotropical genusBaccharopelma(Hemiptera, Psylloidea)<br>associated withBaccharis(Asteraceae). Journal of Natural History, 2004, 38, 2051-2071.                                | 0.5 | 22        |
| 34 | Ant Assemblage Structure in a Secondary Tropical Dry Forest: The Role of Ecological Succession and Seasonality. Sociobiology, 2017, 64, 261.                                                                           | 0.5 | 22        |
| 35 | Phyllostomid Bat Occurrence in Successional Stages of Neotropical Dry Forests. PLoS ONE, 2014, 9, e84572.                                                                                                              | 2.5 | 20        |
| 36 | Monitoring deforestation with MODIS Active Fires in Neotropical dry forests: An analysis of<br>local-scale assessments in Mexico, Brazil and Bolivia. Journal of Arid Environments, 2013, 97, 150-159.                 | 2.4 | 17        |

7

| #  | Article                                                                                                                                                                                                                 | IF               | CITATIONS          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 37 | Seasonal and diel variations in the activity of canopy insect herbivores differ between deciduous and evergreen plant species in a tropical dry forest. Journal of Insect Conservation, 2017, 21, 667-676.              | 1.4              | 17                 |
| 38 | Ontogenetic and Temporal Variations in Herbivory and Defense of <i>Handroanthus<br/>spongiosus</i> (Bignoniaceae) in a Brazilian Tropical Dry Forest. Environmental Entomology, 2012, 41,<br>541-550.                   | 1.4              | 16                 |
| 39 | Tannins in Baccharis dracunculifolia (Asteraceae): effects of seasonality, water availability and plant<br>sex. Acta Botanica Brasilica, 1999, 13, 167-174.                                                             | 0.8              | 15                 |
| 40 | Dynamics of Carbon Accumulation in Tropical Dry Forests under Climate Change Extremes. Forests, 2021, 12, 106.                                                                                                          | 2.1              | 14                 |
| 41 | Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots.<br>Plants People Planet, 2021, 3, 295-300.                                                                             | 3.3              | 12                 |
| 42 | Leaf damage and functional traits along a successional gradient in Brazilian tropical dry forests.<br>Plant Ecology, 2018, 219, 403-415.                                                                                | 1.6              | 11                 |
| 43 | Interception of Rainfall in Successional Tropical Dry Forests in Brazil and Costa Rica. Geosciences<br>(Switzerland), 2018, 8, 486.                                                                                     | 2.2              | 11                 |
| 44 | Simulating Deforestation in Minas Gerais, Brazil, under Changing Government Policies and Socioeconomic Conditions. PLoS ONE, 2015, 10, e0137911.                                                                        | 2.5              | 11                 |
| 45 | Effects of Habitat Structure, Plant Cover, and Successional Stage on the Bat Assemblage of a Tropical<br>Dry Forest at Different Spatial Scales. Diversity, 2018, 10, 41.                                               | 1.7              | 10                 |
| 46 | Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 2022, 8, .                                                                                                                  | 10.3             | 10                 |
| 47 | MODIS and PROBA-V NDVI Products Differ when Compared with Observations from Phenological Towers at Four Tropical Dry Forests in the Americas. Remote Sensing, 2019, 11, 2316.                                           | 4.0              | 9                  |
| 48 | Biophysical and Socioeconomic Factors Associated to Deforestation and Forest Recovery in Brazilian<br>Tropical Dry Forests. Frontiers in Forests and Global Change, 2020, 3, .                                          | 2.3              | 9                  |
| 49 | Estimates of deforestation avoided by protected areas: a case study in Brazilian tropical dry forests<br>and Cerrado. Landscape Research, 2020, 45, 470-483.                                                            | 1.6              | 9                  |
| 50 | Baccharis: A Neotropical Model System to Study Insect Plant Interactions. , 2014, , 193-219.                                                                                                                            |                  | 9                  |
| 51 | Spatiotemporal variation in phyllostomid bat assemblages over a successional gradient in a tropical dry forest in southeastern Brazil. Journal of Tropical Ecology, 2014, 30, 123-132.                                  | 1.1              | 8                  |
| 52 | An experimental test of rainfall as a control agent of Glycaspis brimblecombei Moore (Hemiptera,) Tj ETQq0 0 0<br>Entomologia, 2012, 56, 101-105.                                                                       | gBT /Over<br>0.4 | lock 10 Tf 50<br>8 |
| 53 | Consequences of habitat disturbance on seed fate of a <scp>B</scp> razilian tropical dry forest tree<br><scp><i>C</i></scp> <i>avanillesia arborea</i> ( <scp>M</scp> alvaceae). Austral Ecology, 2015, 40,<br>726-732. | 1.5              | 7                  |
|    |                                                                                                                                                                                                                         |                  |                    |

54Galling Insect Species Richness and Leaf Herbivory in an Abrupt Transition Between Cerrado and<br/>Tropical Dry Forest. Annals of the Entomological Society of America, 2016, 109, 705-712.2.5

MÃirio M EspÃrito-Santo

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Land-cover changes and drivers of palm swamp degradation in southeastern Brazil from 1984 to 2018.<br>Applied Geography, 2021, 137, 102604.                                                                              | 3.7 | 7         |
| 56 | Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. , 2009, , 291-304.                                                                                 |     | 5         |
| 57 | Does leaf flushing in the dry season affect leaf traits and herbivory in a tropical dry forest?. Die<br>Naturwissenschaften, 2020, 107, 51.                                                                              | 1.6 | 5         |
| 58 | Intra- and interspecific variations on plant functional traits along a successional gradient in a<br>Brazilian tropical dry forest. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021,<br>279, 151815. | 1.2 | 5         |
| 59 | Cynipid gall growth dynamics and enemy attack: effects of gall size, toughness and thickness.<br>Neotropical Entomology, 1999, 28, 211-218.                                                                              | 0.2 | 4         |
| 60 | Soil resource availability, plant defense, and herbivory along a successional gradient in a tropical dry forest. Plant Ecology, 2021, 222, 625-637.                                                                      | 1.6 | 4         |
| 61 | <i>Glycaspis brimblecombei</i> (Hemiptera: Psyllidae) attack patterns on different <i>Eucalyptus</i> genotypes. PeerJ, 2017, 5, e3864.                                                                                   | 2.0 | 4         |
| 62 | Determining the K coefficient to leaf area index estimations in a tropical dry forest. International Journal of Biometeorology, 2018, 62, 1187-1197.                                                                     | 3.0 | 3         |
| 63 | Contrasting successional stages lead to intra- and interspecific differences in leaf functional traits and herbivory levels in a Mexican tropical dry forest. European Journal of Forest Research, 2022, 141, 225-239.   | 2.5 | 3         |
| 64 | MYRACRODRUON URUNDEUVA FR ALL. (AROEIRA TREE) POPULATION DYNAMICS, DIAMETER GROWTH RATE<br>AND ITS POTENTIAL FOR SUSTAINABLE MANAGEMENT IN SUCCESSIONAL TROPICAL DRY FORESTS OF BRAZIL.<br>Revista Arvore, 2017, 41, .   | 0.5 | 1         |
| 65 | MONITORING OF BRAZILIAN DECIDUOUS SEASONAL FOREST BY REMOTE SENSING. Mercator: Revista De<br>Geografia Da UFC, 2020, 19, 1-20.                                                                                           | 0.2 | 1         |
| 66 | Successional and Intraspecific Variations in Leaf Traits, Spectral Reflectance Indices and Herbivory in a Brazilian Tropical Dry Forest. Frontiers in Forests and Global Change, 2021, 4, .                              | 2.3 | 1         |
| 67 | Optical wireless sensor networks observe leaf phenology and photosynthetic radiation interception in a Brazilian tropical dry forest. , 2012, , .                                                                        |     | 0         |
| 68 | Efeitos da umidade do solo e da cobertura vegetal na distribuição e abundância de Drosera montana<br>(Droseraceae). Acta Botanica Brasilica, 1999, 13, 299-305.                                                          | 0.8 | 0         |
| 69 | Dinâmica Espaço-Temporal da Cobertura e Uso do Solo em Unidades de Conservação no Norte de Minas<br>Gerais, Brasil, entre 1986 e 2015. Biodiversidade Brasileira - BioBrasil, 2022, 12, .                                | 0.2 | 0         |