
Frédéric Fabre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1567497/publications.pdf Version: 2024-02-01

FDÃODÃODIC FARDE

#	Article	IF	CITATIONS
1	The conflicting relationships between aphids and men: A review of aphid damage and control strategies. Comptes Rendus - Biologies, 2010, 333, 539-553.	0.2	337
2	Landscape epidemiology of plant diseases. Journal of the Royal Society Interface, 2007, 4, 963-972.	3.4	182
3	Estimation of the number of virus particles transmitted by an insect vector. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17891-17896.	7.1	142
4	High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods, 2013, 9, 17.	4.3	135
5	Durable strategies to deploy plant resistance in agricultural landscapes. New Phytologist, 2012, 193, 1064-1075.	7.3	109
6	Adaptation of a plant pathogen to partial host resistance: selection for greater aggressiveness in grapevine downy mildew. Evolutionary Applications, 2016, 9, 709-725.	3.1	104
7	Determinants of host species range in plant viruses. Journal of General Virology, 2017, 98, 862-873.	2.9	56
8	Constraints on evolution of virus avirulence factors predict the durability of corresponding plant resistances. Molecular Plant Pathology, 2009, 10, 599-610.	4.2	54
9	Epidemiological and evolutionary management of plant resistance: optimizing the deployment of cultivar mixtures in time and space in agricultural landscapes. Evolutionary Applications, 2015, 8, 919-932.	3.1	51
10	Aphid Abundance on Cereals in Autumn Predicts Yield Losses Caused by Barley yellow dwarf virus. Phytopathology, 2003, 93, 1217-1222.	2.2	50
11	Key determinants of resistance durability to plant viruses: Insights from a model linking within- and between-host dynamics. Virus Research, 2009, 141, 140-149.	2.2	49
12	Mosaics often outperform pyramids: insights from a model comparing strategies for the deployment of plant resistance genes against viruses in agricultural landscapes. New Phytologist, 2017, 216, 239-253.	7.3	49
13	Models of Plant Resistance Deployment. Annual Review of Phytopathology, 2021, 59, 125-152.	7.8	47
14	Improvement of Barley yellow dwarf virus-PAV detection in single aphids using a fluorescent real time RT-PCR. Journal of Virological Methods, 2003, 110, 51-60.	2.1	45
15	Effects of climate and land use on the occurrence of viruliferous aphids and the epidemiology of barley yellow dwarf disease. Agriculture, Ecosystems and Environment, 2005, 106, 49-55.	5.3	44
16	Tracing Individual Movements Of Aphids Reveals Preferential Routes Of Population Transfers In Agroecosystems. , 2006, 16, 839-844.		39
17	Modelling the Evolutionary Dynamics of Viruses within Their Hosts: A Case Study Using High-Throughput Sequencing. PLoS Pathogens, 2012, 8, e1002654.	4.7	39
18	Barley yellow dwarf disease risk assessment based on Bayesian modelling of aphid population dynamics. Ecological Modelling, 2006, 193, 457-466.	2.5	38

Frédéric Fabre

#	Article	IF	CITATIONS
19	Search for factors involved in the rapid shift in Watermelon mosaic virus (WMV) populations in South-eastern France. Virus Research, 2011, 159, 115-123.	2.2	37
20	Narrow Bottlenecks Affect Pea Seedborne Mosaic Virus Populations during Vertical Seed Transmission but not during Leaf Colonization. PLoS Pathogens, 2014, 10, e1003833.	4.7	36
21	Molecular epidemiology of Zucchini yellow mosaic virus in France: An historical overview. Virus Research, 2009, 141, 190-200.	2.2	32
22	The Number of Target Molecules of the Amplification Step Limits Accuracy and Sensitivity in Ultradeep-Sequencing Viral Population Studies. Journal of Virology, 2017, 91, .	3.4	28
23	Small Bottleneck Size in a Highly Multipartite Virus during a Complete Infection Cycle. Journal of Virology, 2018, 92, .	3.4	26
24	Financial Benefit of Using Crop Protection Decision Rules Over Systematic Spraying Strategies. Phytopathology, 2007, 97, 1484-1490.	2.2	24
25	Variability of Botrytis cinerea sensitivity to pyrrolnitrin, an antibiotic produced by biological control agents. BioControl, 2011, 56, 353-363.	2.0	24
26	Interaction Patterns between <i>Potato Virus Y</i> and eIF4E-Mediated Recessive Resistance in the Solanaceae. Journal of Virology, 2014, 88, 9799-9807.	3.4	23
27	Comparative whitefly transmission of <i>Tomato chlorosis virus</i> and <i>Tomato infectious chlorosis virus </i> from single or mixed infections. Plant Pathology, 2009, 58, 221-227.	2.4	21
28	Hierarchical Bayesian Modelling of plant colonisation by winged aphids: Inferring dispersal processes by linking aerial and field count data. Ecological Modelling, 2010, 221, 1770-1778.	2.5	20
29	Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens. Mathematical Models and Methods in Applied Sciences, 2017, 27, 385-426.	3.3	20
30	Temporal niche differentiation of parasites sharing the same plantÂhost: oak powdery mildew as a case study. Ecosphere, 2016, 7, e01517.	2.2	19
31	Optimising Reactive Disease Management Using Spatially Explicit Models at the Landscape Scale. Plant Pathology in the 21st Century, 2021, , 47-72.	0.9	19
32	Estimating virus effective population size and selection without neutral markers. PLoS Pathogens, 2017, 13, e1006702.	4.7	18
33	Comparison of the Efficacy of Different Food Attractants and Their Concentration for Melon Fly (Diptera: Tephritidae). Journal of Economic Entomology, 2003, 96, 231-238.	1.8	18
34	Asymmetrical over-infection as a process of plant virus emergence. Journal of Theoretical Biology, 2010, 265, 377-388.	1.7	17
35	Biological properties and relative fitness of inter-subgroup cucumber mosaic virus RNAâ€3 recombinants produced in vitro. Journal of General Virology, 2007, 88, 2852-2861.	2.9	16
36	Virus epidemics, plant-controlled population bottlenecks and the durability of plant resistance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180263.	4.0	16

Frédéric Fabre

#	Article	IF	CITATIONS
37	Molecular, biological and serological variability of <i>Zucchini yellow mosaic virus</i> in Tunisia. Plant Pathology, 2008, 57, 1146-1154.	2.4	13
38	Impact of genetic drift, selection and accumulation level on virus adaptation to its host plants. Molecular Plant Pathology, 2018, 19, 2575-2589.	4.2	11
39	Promoting crop pest control by plant diversification in agricultural landscapes: A conceptual framework for analysing feedback loops between agro-ecological and socio-economic effects. Advances in Ecological Research, 2021, 65, 133-165.	2.7	11
40	Quantitative trait loci in pepper control the effective population size of two RNA viruses at inoculation. Journal of General Virology, 2017, 98, 1923-1931.	2.9	10
41	Molecular and biological characterization of two potyviruses infecting lettuce in southeastern France. Plant Pathology, 2017, 66, 970-979.	2.4	9
42	An epiâ€evolutionary model for predicting the adaptation of sporeâ€producing pathogens to quantitative resistance in heterogeneous environments. Evolutionary Applications, 2022, 15, 95-110.	3.1	9
43	Influence of Adding Borax and Modifying pH on Effectiveness of Food Attractants for Melon Fly (Diptera: Tephritidae). Journal of Economic Entomology, 2004, 97, 1137-1141.	1.8	6
44	The quasi-universality of nestedness in the structure of quantitative plant-parasite interactions. , 0, 1, \cdot		4
45	Field and Landscape Risk Factors Impacting Flavescence Dorée Infection: Insights from Spatial Bayesian Modeling in the Bordeaux Vineyards. Phytopathology, 2022, 112, 1686-1697.	2.2	4
46	Chapitre 10. Aménagement de paysages pour la santé des plantes basé sur des modèles. , 2019, , 171-18	30.	0