
Saer Samanipour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1566965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel method for the quantification of tire and polymer-modified bitumen particles in environmental samples by pyrolysis gas chromatography mass spectroscopy. Journal of Hazardous Materials, 2022, 423, 127092.	12.4	42
2	In-Sewer Stability Assessment of Anabolic Steroids and Selective Androgen Receptor Modulators. Environmental Science & Technology, 2022, 56, 1627-1638.	10.0	10
3	Naive Bayes classification model for isotopologue detection in LC-HRMS data. Chemometrics and Intelligent Laboratory Systems, 2022, 223, 104515.	3.5	9
4	Examining the Relevance of the Microplastic-Associated Additive Fraction in Environmental Compartments. ACS ES&T Water, 2022, 2, 405-413.	4.6	9
5	Utilization of Machine Learning for the Differentiation of Positional NPS Isomers with Direct Analysis in Real Time Mass Spectrometry. Analytical Chemistry, 2022, 94, 5029-5040.	6.5	12
6	Automated Feature Mining for Two-Dimensional Liquid Chromatography Applied to Polymers Enabled by Mass Remainder Analysis. Analytical Chemistry, 2022, 94, 5599-5607.	6.5	10
7	Plastics in biosolids from 1950 to 2016: A function of global plastic production and consumption. Water Research, 2021, 201, 117367.	11.3	77
8	Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis. Scientific Data, 2021, 8, 223.	5.3	14
9	Plastics contamination of store-bought rice. Journal of Hazardous Materials, 2021, 416, 125778.	12.4	70
10	In-sewer stability of selected analgesics and their metabolites. Water Research, 2021, 204, 117647.	11.3	9
11	Out of sight but not out of mind: Size fractionation of plastics bioaccumulated by field deployed oysters. Journal of Hazardous Materials Letters, 2021, 2, 100021.	3.6	14
12	From Centroided to Profile Mode: Machine Learning for Prediction of Peak Width in HRMS Data. Analytical Chemistry, 2021, 93, 16562-16570.	6.5	9
13	An assessment of quality assurance/quality control efforts in high resolution mass spectrometry non-target workflows for analysis of environmental samples. TrAC - Trends in Analytical Chemistry, 2020, 133, 116063.	11.4	73
14	Airborne emissions of microplastic fibres from domestic laundry dryers. Science of the Total Environment, 2020, 747, 141175.	8.0	99
15	The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let's cooperate!. Environmental Sciences Europe, 2020, 32, .	5.5	46
16	Population Socioeconomics Predicted Using Wastewater. Environmental Science and Technology Letters, 2020, 7, 567-572.	8.7	23
17	Quantitative Analysis of Selected Plastics in High-Commercial-Value Australian Seafood by Pyrolysis Gas Chromatography Mass Spectrometry. Environmental Science & Technology, 2020, 54, 9408-9417.	10.0	143
18	Concentration and Distribution of Naphthenic Acids in the Produced Water from Offshore Norwegian North Sea Oilfields. Environmental Science & Technology, 2020, 54, 2707-2714.	10.0	23

SAER SAMANIPOUR

#	Article	IF	CITATIONS
19	Wastewater-based estimation of the prevalence of gout in Australia. Science of the Total Environment, 2020, 715, 136925.	8.0	26
20	Identification and quantification of selected plastics in biosolids by pressurized liquid extraction combined with double-shot pyrolysis gas chromatography–mass spectrometry. Science of the Total Environment, 2020, 715, 136924.	8.0	145
21	Response to Comment on "Quantitative Analysis of Selected Plastics in High-Commercial-Value Australian Seafood by Pyrolysis Gas Chromatography Mass Spectrometry― Environmental Science & Technology, 2020, 54, 15556-15557.	10.0	2
22	Self Adjusting Algorithm for the Nontargeted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatography Profile Data. Analytical Chemistry, 2019, 91, 10800-10807.	6.5	24
23	Social, demographic, and economic correlates of food and chemical consumption measured by wastewater-based epidemiology. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21864-21873.	7.1	104
24	Machine learning combined with non-targeted LC-HRMS analysis for a risk warning system of chemical hazards in drinking water: A proof of concept. Talanta, 2019, 195, 426-432.	5.5	28
25	Integrated chemical exposure assessment of coastal green turtle foraging grounds on the Great Barrier Reef. Science of the Total Environment, 2019, 657, 401-409.	8.0	21
26	The effect of extraction methodology on the recovery and distribution of naphthenic acids of oilfield produced water. Science of the Total Environment, 2019, 652, 1416-1423.	8.0	26
27	Exploring the Potential of a Global Emerging Contaminant Early Warning Network through the Use of Retrospective Suspect Screening with High-Resolution Mass Spectrometry. Environmental Science & Technology, 2018, 52, 5135-5144.	10.0	101
28	Combining a Deconvolution and a Universal Library Search Algorithm for the Nontarget Analysis of Data-Independent Acquisition Mode Liquid Chromatographyâ´'High-Resolution Mass Spectrometry Results. Environmental Science & Technology, 2018, 52, 4694-4701.	10.0	52
29	Assessing sample extraction efficiencies for the analysis of complex unresolved mixtures of organic pollutants: A comprehensive non-target approach. Analytica Chimica Acta, 2018, 1025, 92-98.	5.4	24
30	Two stage algorithm vs commonly used approaches for the suspect screening of complex environmental samples analyzed via liquid chromatography high resolution time of flight mass spectroscopy: A test study. Journal of Chromatography A, 2017, 1501, 68-78.	3.7	22
31	Statistical Variable Selection: An Alternative Prioritization Strategy during the Nontarget Analysis of LC-HR-MS Data. Analytical Chemistry, 2017, 89, 5585-5591.	6.5	22
32	Elevated Concentrations of 4-Bromobiphenyl and 1,3,5-Tribromobenzene Found in Deep Water of Lake Geneva Based on GC×GC-ENCI-TOFMS and GC×GC-μECD. ACS Omega, 2017, 2, 641-652.	3.5	13
33	A two stage algorithm for target and suspect analysis of produced water via gas chromatography coupled with high resolution time of flight mass spectrometry. Journal of Chromatography A, 2016, 1463, 153-161.	3.7	16
34	Analyte quantification with comprehensive two-dimensional gas chromatography: Assessment of methods for baseline correction, peak delineation, and matrix effect elimination for real samples. Journal of Chromatography A, 2015, 1375, 123-139.	3.7	27
35	GC×GC Quantification of Priority and Emerging Nonpolar Halogenated Micropollutants in All Types of Wastewater Matrices: Analysis Methodology, Chemical Occurrence, and Partitioning. Environmental Science & Technology, 2015, 49, 7914-7925.	10.0	26
36	Structure investigations of binary azeotrope of diethyl amine–acetone by FT-IR and 1H NMR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 72, 390-393.	3.9	5