
Juan-Carlos Saiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1566398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low Immune Cross-Reactivity between West Nile Virus and a Zika Virus Vaccine Based on Modified Vaccinia Virus Ankara. Pharmaceuticals, 2022, 15, 354.	3.8	2
2	Antivirals against (Re)emerging Flaviviruses: Should We Target the Virus or the Host?. ACS Medicinal Chemistry Letters, 2022, 13, 5-10.	2.8	13
3	Nanobodies Protecting From Lethal SARS-CoV-2 Infection Target Receptor Binding Epitopes Preserved in Virus Variants Other Than Omicron. Frontiers in Immunology, 2022, 13, 863831.	4.8	10
4	Differential neurovirulence of Usutu virus lineages in mice and neuronal cells. Journal of Neuroinflammation, 2021, 18, 11.	7.2	21
5	Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence, 2021, 12, 1145-1173.	4.4	22
6	The combined vaccination protocol of DNA/MVA expressing Zika virus structural proteins as efficient inducer of T and B cell immune responses. Emerging Microbes and Infections, 2021, 10, 1441-1456.	6.5	6
7	Relevance of oxidative stress in inhibition of eIF2 alpha phosphorylation and stress granules formation during Usutu virus infection. PLoS Neglected Tropical Diseases, 2021, 15, e0009072.	3.0	8
8	Akt Kinase Intervenes in Flavivirus Replication by Interacting with Viral Protein NS5. Viruses, 2021, 13, 896.	3.3	10
9	Previous Usutu Virus Exposure Partially Protects Magpies (Pica pica) against West Nile Virus Disease But Does Not Prevent Horizontal Transmission. Viruses, 2021, 13, 1409.	3.3	7
10	Novel Nonnucleoside Inhibitors of Zika Virus Polymerase Identified through the Screening of an Open Library of Antikinetoplastid Compounds. Antimicrobial Agents and Chemotherapy, 2021, 65, e0089421.	3.2	7
11	Molecular docking and antiviral activities of plant derived compounds against zika virus. Microbial Pathogenesis, 2020, 149, 104540.	2.9	6
12	Vaccines against RNA Viruses. Vaccines, 2020, 8, 479.	4.4	2
13	Potential for Protein Kinase Pharmacological Regulation in Flaviviridae Infections. International Journal of Molecular Sciences, 2020, 21, 9524.	4.1	8
14	Dengue Virus Strikes Back: Increased Future Risk of Severe Dengue Disease in Humans as a Result of Previous Exposure to Zika Virus. Journal of Clinical Medicine, 2020, 9, 4060.	2.4	1
15	Genome Sequence of Oenococcus oeni OE37, an Autochthonous Strain Isolated from an Italian White Wine. Microbiology Resource Announcements, 2020, 9, .	0.6	2
16	Animal and Human Vaccines against West Nile Virus. Pathogens, 2020, 9, 1073.	2.8	31
17	Lipid Metabolism as a Source of Druggable Targets for Antiviral Discovery against Zika and Other Flaviviruses. Pharmaceuticals, 2019, 12, 97.	3.8	38
18	Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals, 2019, 12, 127.	3.8	11

#	Article	IF	CITATIONS
19	Clinical Infections by Herpesviruses in Patients Treated with Valproic Acid: A Nested Case-Control Study in the Spanish Primary Care Database, BIFAP. Journal of Clinical Medicine, 2019, 8, 1442.	2.4	10
20	Current Progress of Avian Vaccines Against West Nile Virus. Vaccines, 2019, 7, 126.	4.4	13
21	A Recombinant Subviral Particle-Based Vaccine Protects Magpie (Pica pica) Against West Nile Virus Infection. Frontiers in Microbiology, 2019, 10, 1133.	3.5	7
22	Targeting host metabolism by inhibition of acetyl-Coenzyme A carboxylase reduces flavivirus infection in mouse models. Emerging Microbes and Infections, 2019, 8, 624-636.	6.5	29
23	The Scientific Response to Zika Virus. Journal of Clinical Medicine, 2019, 8, 369.	2.4	4
24	Anthocyanins enhance yeast's adsorption of Ochratoxin A during the alcoholic fermentation. European Food Research and Technology, 2019, 245, 309-314.	3.3	13
25	Direct Activation of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by PF-06409577 Inhibits Flavivirus Infection through Modification of Host Cell Lipid Metabolism. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	41
26	A Vaccine Based on a Modified Vaccinia Virus Ankara Vector Expressing Zika Virus Structural Proteins Controls Zika Virus Replication in Mice. Scientific Reports, 2018, 8, 17385.	3.3	43
27	Host-Directed Antivirals: A Realistic Alternative to Fight Zika Virus. Viruses, 2018, 10, 453.	3.3	41
28	Antibody-Dependent Enhancement and Zika: Real Threat or Phantom Menace?. Frontiers in Cellular and Infection Microbiology, 2018, 8, 44.	3.9	57
29	Editorial: Zika Virus Research. Frontiers in Neurology, 2018, 9, 168.	2.4	2
30	Pharmacological Inhibition of Protein Kinase C Reduces West Nile Virus Replication. Viruses, 2018, 10, 91.	3.3	25
31	High susceptibility of magpie (Pica pica) to experimental infection with lineage 1 and 2 West Nile virus. PLoS Neglected Tropical Diseases, 2018, 12, e0006394.	3.0	23
32	Phage-host interactions analysis of newly characterized Oenococcus oeni bacteriophages: Implications for malolactic fermentation in wine. International Journal of Food Microbiology, 2017, 246, 12-19.	4.7	15
33	Antiviral Activity of Nordihydroguaiaretic Acid and Its Derivative Tetra- <i>O</i> -Methyl Nordihydroguaiaretic Acid against West Nile Virus and Zika Virus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	53
34	The Race To Find Antivirals for Zika Virus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	86
35	Reply to Iannetta et al., "Azithromycin Shows Anti-Zika Virus Activity in Human Glial Cellsâ€. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	2
36	Extinction of West Nile Virus by Favipiravir through Lethal Mutagenesis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	61

#	Article	IF	CITATIONS
37	Usutu virus: current knowledge and future perspectives. Virus Adaptation and Treatment, 2017, Volume 9, 27-40.	1.5	17
38	Antiviral Properties of the Natural Polyphenols Delphinidin and Epigallocatechin Gallate against the Flaviviruses West Nile Virus, Zika Virus, and Dengue Virus. Frontiers in Microbiology, 2017, 8, 1314.	3.5	152
39	Zika Virus: What Have We Learnt Since the Start of the Recent Epidemic?. Frontiers in Microbiology, 2017, 8, 1554.	3.5	44
40	Deleterious effect of Usutu virus on human neural cells. PLoS Neglected Tropical Diseases, 2017, 11, e0005913.	3.0	33
41	Zika virus infection confers protection against West Nile virus challenge in mice. Emerging Microbes and Infections, 2017, 6, 1-6.	6.5	20
42	First TBEV serological screening in Flemish wild boar. Infection Ecology and Epidemiology, 2016, 6, 31099.	0.8	17
43	Neurological manifestations of Zika virus infection. World Journal of Virology, 2016, 5, 135.	2.9	47
44	Inhibition of West Nile Virus Multiplication in Cell Culture by Anti-Parkinsonian Drugs. Frontiers in Microbiology, 2016, 7, 296.	3.5	18
45	Zika Virus: the Latest Newcomer. Frontiers in Microbiology, 2016, 7, 496.	3.5	167
46	The Amino Acid Substitution Q65H in the 2C Protein of Swine Vesicular Disease Virus Confers Resistance to Golgi Disrupting Drugs. Frontiers in Microbiology, 2016, 7, 612.	3.5	1
47	Response: Commentary: Zika Virus: the Latest Newcomer. Frontiers in Microbiology, 2016, 7, 1398.	3.5	5
48	Prevalence of Hepatitis E Virus (HEV) Antibodies in Mexican Pigs. Food and Environmental Virology, 2016, 8, 156-159.	3.4	20
49	Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses. Progress in Lipid Research, 2016, 64, 123-137.	11.6	116
50	A recombinant DNA vaccine protects mice deficient in the alpha/beta interferon receptor against lethal challenge with Usutu virus. Vaccine, 2016, 34, 2066-2073.	3.8	32
51	First Complete Coding Sequence of a Spanish Isolate of Swine Vesicular Disease Virus. Genome Announcements, 2016, 4, .	0.8	3
52	Host sphingomyelin increases West Nile virus infection in vivo. Journal of Lipid Research, 2016, 57, 422-432.	4.2	43
53	Modification of the Host Cell Lipid Metabolism Induced by Hypolipidemic Drugs Targeting the Acetyl Coenzyme A Carboxylase Impairs West Nile Virus Replication. Antimicrobial Agents and Chemotherapy, 2016, 60, 307-315.	3.2	55
54	Limited susceptibility of mice to Usutu virus (USUV) infection and induction of flavivirus cross-protective immunity. Virology, 2015, 482, 67-71.	2.4	48

#	Article	IF	CITATIONS
55	West Nile virus serosurveillance in pigs, wild boars, and roe deer in Serbia. Veterinary Microbiology, 2015, 176, 365-369.	1.9	44
56	Reconciling West Nile virus with the autophagic pathway. Autophagy, 2015, 11, 861-864.	9.1	17
57	WNV infection - an emergent vector borne viral infection in Serbia: Current situation. Veterinarski Glasnik, 2015, 69, 111-126.	0.3	3
58	Protection of a Single Dose West Nile Virus Recombinant Subviral Particle Vaccine against Lineage 1 or 2 Strains and Analysis of the Cross-Reactivity with Usutu Virus. PLoS ONE, 2014, 9, e108056.	2.5	33
59	Stress responses in flavivirus-infected cells: activation of unfolded protein response and autophagy. Frontiers in Microbiology, 2014, 5, 266.	3.5	116
60	Prevalence of hepatitis E virus (HEV) antibodies in Serbian blood donors. Journal of Infection in Developing Countries, 2014, 8, 1322-1327.	1.2	30
61	The Composition of West Nile Virus Lipid Envelope Unveils a Role of Sphingolipid Metabolism in Flavivirus Biogenesis. Journal of Virology, 2014, 88, 12041-12054.	3.4	125
62	Amino acid substitutions in the non-structural proteins 4A or 4B modulate the induction of autophagy in West Nile virus infected cells independently of the activation of the unfolded protein response. Frontiers in Microbiology, 2014, 5, 797.	3.5	27
63	Inhibition of multiplication of the prototypic arenavirus LCMV by valproic acid. Antiviral Research, 2013, 99, 172-179.	4.1	24
64	Infection with Usutu Virus Induces an Autophagic Response in Mammalian Cells. PLoS Neglected Tropical Diseases, 2013, 7, e2509.	3.0	31
65	Development of a New Method for Detection and Identification of Oenococcus oeni Bacteriophages Based on Endolysin Gene Sequence and Randomly Amplified Polymorphic DNA. Applied and Environmental Microbiology, 2013, 79, 4799-4805.	3.1	21
66	A Single Amino Acid Substitution in the Core Protein of West Nile Virus Increases Resistance to Acidotropic Compounds. PLoS ONE, 2013, 8, e69479.	2.5	11
67	Characterization of Hepatitis E Virus Recombinant ORF2 Proteins Expressed by Vaccinia Viruses. Journal of Virology, 2012, 86, 7880-7886.	3.4	25
68	Acid-dependent viral entry. Virus Research, 2012, 167, 125-137.	2.2	46
69	Protection against West Nile Virus Infection in Mice after Inoculation with Type I Interferon-Inducing RNA Transcripts. PLoS ONE, 2012, 7, e49494.	2.5	17
70	West Nile virus: A re-emerging pathogen revisited. World Journal of Virology, 2012, 1, 51.	2.9	69
71	Virus hazards from food, water and other contaminated environments. FEMS Microbiology Reviews, 2012, 36, 786-814.	8.6	250
72	Recombinant West Nile virus envelope protein E and domain III expressed in insect larvae protects mice against West Nile disease. Vaccine, 2011, 29, 1830-1835.	3.8	30

#	Article	IF	CITATIONS
73	Maternal transfer of antibodies to the offspring after mice immunization with insect larvae-derived recombinant hepatitis E virus ORF-2 proteins. Virus Research, 2011, 158, 28-32.	2.2	17
74	West Nile Virus Replication Requires Fatty Acid Synthesis but Is Independent on Phosphatidylinositol-4-Phosphate Lipids. PLoS ONE, 2011, 6, e24970.	2.5	136
75	Widespread distribution of hepatitis E virus in Spanish pig herds. BMC Research Notes, 2011, 4, 412.	1.4	38
76	First Serological Evidence of West Nile Virus Activity in Horses in Serbia. Vector-Borne and Zoonotic Diseases, 2011, 11, 1303-1305.	1.5	52
77	Inhibition of Enveloped Virus Infection of Cultured Cells by Valproic Acid. Journal of Virology, 2011, 85, 1267-1274.	3.4	46
78	A West Nile virus mutant with increased resistance to acid-induced inactivation. Journal of General Virology, 2011, 92, 831-840.	2.9	41
79	DnaK/DnaJ-assisted recombinant protein production in Trichoplusia ni larvae. Applied Microbiology and Biotechnology, 2010, 86, 633-639.	3.6	8
80	First Serological Study of Hepatitis E Virus Infection in Backyard Pigs from Serbia. Food and Environmental Virology, 2010, 2, 110-113.	3.4	13
81	Evaluation of an enzyme-linked immunosorbent assay for detection of West Nile virus infection based on a recombinant envelope protein produced in Trichoplusia ni larvae. Journal of Virological Methods, 2010, 166, 37-41.	2.1	21
82	West Nile virus (WNV) transmission routes in the murine model: Intrauterine, by breastfeeding and after cannibal ingestion. Virus Research, 2010, 151, 240-243.	2.2	36
83	Serological Immunoassay for Detection of Hepatitis E Virus on the Basis of Genotype 3 Open Reading Frame 2 Recombinant Proteins Produced in <i>Trichoplusia ni</i> Larvae. Journal of Clinical Microbiology, 2009, 47, 3276-3282.	3.9	37
84	Expression and Immunoreactivities of Hepatitis E Virus Genotype 3 Open Reading Frame-2 (ORF-2) Recombinant Proteins Expressed in Insect Cells. Food and Environmental Virology, 2009, 1, 77-84.	3.4	8
85	Pregnancy increases the risk of mortality in West Nile virus-infected mice. Journal of General Virology, 2007, 88, 476-480.	2.9	28
86	Chapter 3 Enteric Hepatitis Viruses. Perspectives in Medical Virology, 2007, 17, 39-67.	0.1	9
87	Dynamics of hepatitis C virus NS5A quasispecies during interferon and ribavirin therapy in responder and non-responder patients with genotype 1b chronic hepatitis C. Journal of General Virology, 2005, 86, 1067-1075.	2.9	59
88	Survey of Bovine Enterovirus in Biological and Environmental Samples by a Highly Sensitive Real-Time Reverse Transcription-PCR. Applied and Environmental Microbiology, 2005, 71, 3536-3543.	3.1	77
89	The Oncogenic Potential of Hepatitis C Virus NS5A Sequence Variants Is Associated with PKR Regulation. Journal of Interferon and Cytokine Research, 2005, 25, 152-164.	1.2	33
90	Hepatitis C virus population analysis of a single-source nosocomial outbreak reveals an inverse correlation between viral load and quasispecies complexity. Journal of General Virology, 2004, 85, 3619-3626.	2.9	19

6

#	Article	IF	CITATIONS
91	Evolution of hepatitis C virus quasispecies immediately following liver transplantation. Liver Transplantation, 2004, 10, 1131-1139.	2.4	53
92	Antibody response after RSV infection in children younger than 1 year of age living in a rural area of Mozambique. Journal of Medical Virology, 2003, 69, 579-587.	5.0	6
93	Characterization and evolution of NS5A quasispecies of hepatitis C virus genotype 1b in patients with different stages of liver disease. Journal of Medical Virology, 2003, 71, 195-204.	5.0	18
94	Influence of human immunodeficiency virus type 1 subtype on mother-to-child transmission. Journal of General Virology, 2003, 84, 607-613.	2.9	30
95	Outbreak of Nosocomial Hepatitis C Virus Infection Resolved by Genetic Analysis of HCV RNA. Journal of Clinical Microbiology, 2002, 40, 4363-4366.	3.9	49
96	Prevalence of respiratory syncytial virus IgG antibodies in infants living in a rural area of Mozambique. Journal of Medical Virology, 2002, 67, 616-623.	5.0	48
97	Influence of the genetic heterogeneity of the ISDR and PePHD regions of hepatitis C virus on the response to interferon therapy in chronic hepatitis C. Journal of Medical Virology, 2001, 65, 35-44.	5.0	27
98	Influence of the dynamics of the hypervariable region 1 of hepatitis C virus (HCV) on the histological severity of HCV recurrence after liver transplantation. Journal of Medical Virology, 2001, 65, 266-275.	5.0	34
99	High amino acid variability within the NS5A of hepatitis C virus (HCV) is associated with hepatocellular carcinoma in patients with HCV-1b–related cirrhosis. Hepatology, 2001, 34, 158-167.	7.3	44
100	Influence of the genetic heterogeneity of the ISDR and PePHD regions of hepatitis C virus on the response to interferon therapy in chronic hepatitis C. Journal of Medical Virology, 2001, 65, 35-44.	5.0	2
101	Genetic variability among group A and B respiratory syncytial viruses in Mozambique: identification of a new cluster of group B isolates. Journal of General Virology, 2001, 82, 103-111.	2.9	63
102	Prevalence and Route of Transmission of Infection With a Novel DNA Virus (TTV), Hepatitis C Virus, and Hepatitis G Virus in Patients Infected With HIV. Journal of Acquired Immune Deficiency Syndromes (1999), 2000, 23, 89-94.	2.1	26
103	Prevalence and Route of Transmission of Infection With a Novel DNA Virus (TTV), Hepatitis C Virus, and Hepatitis G Virus in Patients Infected With HIV. Journal of Acquired Immune Deficiency Syndromes (1999), 2000, 23, 89-94.	2.1	24
104	Assessment of Genotype and Molecular Evolution of Hepatitis C Virus in Formalin-Fixed Paraffin-Embedded Liver Tissue from Patients With Chronic Hepatitis C Virus Infection. Laboratory Investigation, 2000, 80, 851-856.	3.7	9
105	Genetic evolution of GB virus C/hepatitis G virus (GBV-C/HGV) under interferon pressure. Antiviral Research, 2000, 46, 157-170.	4.1	2
106	Relationship of the genomic complexity of hepatitis C virus with liver disease severity and response to interferon in patients with chronic HCV genotype 1b interferon. Hepatology, 1999, 29, 897-903.	7.3	73
107	Infection with a novel human DNA virus (TTV) has no pathogenic significance in patients with liver diseases. Journal of Hepatology, 1999, 30, 1028-1034.	3.7	67
108	Molecular Evidence of Mother-to-Infant Transmission of Hepatitis G Virus among Women without Known Risk Factors for Parenteral Infections. Journal of Clinical Microbiology, 1999, 37, 2333-2336.	3.9	22

#	Article	IF	CITATIONS
109	Prevalence and genotypes of GB virus C/hepatitis G virus (GBV-C/HGV) and hepatitis C virus among patients infected with human immunodeficiency virus: Evidence of GBV-C/HGV sexual transmission. , 1998, 55, 293-299.		38
110	The Prognostic Relevance of the Nonstructural 5A Gene Interferon Sensitivity Determining Region Is Different in Infections with Genotype 1b and 3a Isolates of Hepatitis C Virus. Journal of Infectious Diseases, 1998, 177, 839-847.	4.0	113
111	Hepatitis G virus infection in chronic hepatitis C: frequency, features and response to interferon therapy. Journal of Hepatology, 1997, 26, 787-793.	3.7	53