
Giuseppe Impallomeni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1565999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of linkage position and identification of the reducing end in linear oligosaccharides by negative ion fast atom bombardment mass spectrometry. Analytical Chemistry, 1990, 62, 279-286.	6.5	170
2	The structure of a polysaccharide from infectious strains of Burkholderia cepacia. Carbohydrate Research, 2001, 335, 45-54.	2.3	97
3	Matrix-assisted laser desorption/ionization mass spectrometry of polysaccharides. Rapid Communications in Mass Spectrometry, 1995, 9, 937-941.	1.5	96
4	New fragmentation mechanisms in matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry of carbohydrates. Rapid Communications in Mass Spectrometry, 2004, 18, 392-398.	1.5	95
5	Addition of glycerol plasticizer to seaweeds derived alginates: Influence of microstructure on chemical–physical properties. Carbohydrate Polymers, 2007, 69, 503-511.	10.2	81
6	Structural Study of the Exopolysaccharide Produced by a Clinical Isolate of Burkholderia cepacia. Biochemical and Biophysical Research Communications, 2000, 273, 1088-1094.	2.1	75
7	Primary thermal decomposition processes in aliphatic polyamides. Polymer Degradation and Stability, 1989, 23, 25-41.	5.8	74
8	Evidence for Selective Hydrolysis of Aliphatic Copolyesters Induced by Lipase Catalysis. Biomacromolecules, 2004, 5, 433-444.	5.4	73
9	Oxygen transfer rate and sophorose lipid production byCandida bombicola. Biotechnology and Bioengineering, 2002, 77, 489-494.	3.3	71
10	Linkage analysis in disaccharides by electrospray mass spectrometry. Carbohydrate Research, 1991, 221, 253-257.	2.3	61
11	Sequencing bacterial poly(.betahydroxybutyrate-cobetahydroxyvalerate) by partial methanolysis, HPLC fractionation, and fast-atom-bombardment mass spectrometry analysis. Macromolecules, 1989, 22, 2107-2111.	4.8	59
12	Quantitative applications of matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry: Determination of copolymer composition in bacterial copolyesters. Rapid Communications in Mass Spectrometry, 1993, 7, 1033-1036.	1.5	51
13	Exopolysaccharides produced by Burkholderia cenocepacia recA lineages IIIA and IIIB. Journal of Cystic Fibrosis, 2004, 3, 165-172.	0.7	46
14	Structural analysis of the polysaccharides from Echinacea angustifolia radix. Carbohydrate Polymers, 2006, 65, 263-272.	10.2	41
15	Analytical degradation: An approach to the structural analysis of microbial polyesters by different methods. Journal of Analytical and Applied Pyrolysis, 1989, 16, 239-253.	5.5	40
16	Thermal degradation of microbial poly(4-hydroxybutyrate). Macromolecules, 1994, 27, 332-336.	4.8	40
17	Exopolysaccharides produced by a clinical strain of Burkholderia cepacia isolated from a cystic fibrosis patient. Carbohydrate Research, 2003, 338, 2687-2695.	2.3	40
18	Structure of the exopolysaccharide produced by Enterobacter amnigenus. Carbohydrate Research, 2005, 340, 439-447.	2.3	40

GIUSEPPE IMPALLOMENI

#	Article	IF	CITATIONS
19	The structure of the exocellular polysaccharide from the cyanobacterium Cyanospira capsulata. Carbohydrate Research, 1998, 307, 113-124.	2.3	39
20	Mass-Selective Lipase-Catalyzed Poly(ε-caprolactone) Transesterification Reactions. Macromolecules, 2002, 35, 6858-6866.	4.8	38
21	Acid Catalyzed Transesterification as a Route to Poly(3-hydroxybutyrate-co-ε-caprolactone) Copolymers from Their Homopolymers. Biomacromolecules, 2002, 3, 835-840.	5.4	38
22	Synthesis and characterization of poly(3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids. International Journal of Biological Macromolecules, 2011, 48, 137-145.	7.5	35
23	A new undecassacharide subunit of xyloglucans with two α-l-fucosyl residues. Carbohydrate Research, 1991, 211, 117-129.	2.3	34
24	New results on matrix-assisted laser desorption/ionization mass spectrometry of widely polydisperse hydrosoluble polymers. Rapid Communications in Mass Spectrometry, 2002, 16, 1599-1603.	1.5	34
25	Determination of linkage position in disaccharides by negative-ion fast-atom bombardment mass spectrometry. Rapid Communications in Mass Spectrometry, 1989, 3, 302-304.	1.5	33
26	Sequence distribution of β-hydroxyalkanoate units with higher alkyl groups in bacterial copolyesters. Macromolecules, 1990, 23, 5059-5064.	4.8	33
27	Metabolism of xyloglucan generates xylose-deficient oligosaccharide subunits of this polysaccharide in etiolated peas. Carbohydrate Research, 1995, 277, 291-311.	2.3	33
28	Biosynthesis and structural characterization of medium-chain-length poly(3-hydroxyalkanoates) produced by Pseudomonas aeruginosa from fatty acids. International Journal of Biological Macromolecules, 2001, 29, 107-114.	7.5	32
29	Eleven newly characterized xyloglucan oligoglycosyl alditols: the specific effects of sidechain structure and location on 1H NMR chemical shifts. Carbohydrate Research, 1995, 267, 79-104.	2.3	31
30	Microbial Synthesis of Poly(3-hydroxyalkanoates) byPseudomonasaeruginosafrom Fatty Acids:Â Identification of Higher Monomer Units and Structural Characterization. Biomacromolecules, 2004, 5, 2469-2478.	5.4	30
31	Structure of succinoglycan from an infectious strain of Agrobacterium radiobacter. International Journal of Biological Macromolecules, 2000, 27, 319-326.	7.5	26
32	Exopolysaccharides produced by clinical strains belonging to the Burkholderia cepacia complex. Journal of Cystic Fibrosis, 2007, 6, 145-152.	0.7	24
33	Carbon source effects on the mono/dirhamnolipid ratio produced by Pseudomonas aeruginosa L05, a new human respiratory isolate. New Biotechnology, 2017, 39, 36-41.	4.4	24
34	Poly(3-hydroxybutyrate-co-É›-caprolactone) copolymers and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-É›-caprolactone) terpolymers as novel materials for colloidal drug delivery systems. European Journal of Pharmaceutical Sciences, 2009, 37, 451-462.	4.0	22
35	Biosynthesis and structural characterization of polyhydroxyalkanoates produced by Pseudomonas aeruginosa ATCC 27853 from long odd-chain fatty acids. International Journal of Biological Macromolecules, 2018, 108, 608-614.	7.5	21
36	ldentification of N-acetylglucosamine and 4-O-[1-carboxyethyl]mannose in the exopolysaccharide from Cyanospira capsulata. Carbohydrate Research, 1995, 270, 97-106.	2.3	19

#	Article	IF	CITATIONS
37	Exopolysaccharides produced by Inquilinus limosus, a new pathogen of cystic fibrosis patients: novel structures with usual components. Carbohydrate Research, 2007, 342, 2404-2415.	2.3	19
38	Separation and Structural Characterization of Cyclic and Open Chain Oligomers Produced in the Partial Pyrolysis of Microbial Poly(hydroxybutyrates). Macromolecules, 1995, 28, 7911-7916.	4.8	18
39	Direct Electrospray Ionization Mass Spectrometry Quantitative Analysis of Sebacic and Terephthalic Acids in Biodegradable Polymers. Analytical Chemistry, 2011, 83, 654-660.	6.5	17
40	Macromolecular properties of cepacian in water and in dimethylsulfoxide. Carbohydrate Research, 2008, 343, 81-89.	2.3	16
41	Characterization of biodegradable poly(3-hydroxybutyrate-co-butyleneadipate) copolymers obtained from their homopolymers by microwave-assisted transesterification. Polymer, 2013, 54, 65-74.	3.8	15
42	New amphiphilic derivatives of poly(ethylene glycol) (PEG) as surface modifiers of colloidal drug carriers. III. Lipoamino acid conjugates with carboxy- and amino-PEG5000 polymers. Materials Science and Engineering C, 2015, 46, 470-481.	7.3	14
43	New Amphiphilic Conjugates of Mono―and Bis(carboxy)â€PEG _{2,000} Polymers with Lipoamino Acids as Surface Modifiers of Colloidal Drug Carriers. Macromolecular Chemistry and Physics, 2010, 211, 1148-1156.	2.2	13
44	Primary thermal fragmentation processes in poly(ethylene oxalate) investigated by mass spectrometry. Polymer Degradation and Stability, 1988, 21, 311-321.	5.8	12
45	Synthesis and Characterization of Polyesters Produced by Rhodospirillum rubrum from Pentenoic Acid. Macromolecules, 1995, 28, 3664-3671.	4.8	11
46	Studies on the Interactions of the New 2,6-Bis[2-(heteroaryl)vinyl]1-methylpyridinium Cations with the Decamer d(CGTACGTACG)2. European Journal of Organic Chemistry, 2002, 2002, 145-150.	2.4	11
47	First report of a lyase for cepacian, the polysaccharide produced by Burkholderia cepacia complex bacteria. Biochemical and Biophysical Research Communications, 2006, 339, 821-826.	2.1	11
48	Characterization and laser-induced degradation of a medical grade polylactide. Polymer Degradation and Stability, 2019, 169, 108991.	5.8	11
49	O-Acetyl location on Cepacian, the principal exopolysaccharide of Burkholderia cepacia complex bacteria. Carbohydrate Research, 2011, 346, 2905-2912.	2.3	10
50	New Amphiphilic Conjugates of Amino–Poly(ethylene glycols) With Lipoamino Acids as Surface Modifiers of Colloidal Drug Carriers. Macromolecular Chemistry and Physics, 2013, 214, 46-55.	2.2	10
51	Unsaturated Poly(Hydroxyalkanoates) for the Production of Nanoparticles and the Effect of Cross-Linking on Nanoparticle Features. Materials, 2019, 12, 868.	2.9	10
52	Development and biocompatibility assessments of poly(3-hydroxybutyrate-co-ε-caprolactone) microparticles for diclofenac sodium delivery. Journal of Drug Delivery Science and Technology, 2020, 60, 102081.	3.0	10
53	Sequencing Microbial Copolymers of 3-Hydroxybutyric and 3-Mercaptoalkanoic Acids by NMR, Electrospray Ionization Mass Spectrometry, and Size Exclusion Chromatography NMR. Biomacromolecules, 2007, 8, 985-991.	5.4	9
54	Characterization by mass spectrometry of poly(3-hydroxyalkanoates) produced by Rhodospirillum rubrum from 3-hydroxyacids. International Journal of Biological Macromolecules, 1999, 26, 201-211.	7.5	8

#	Article	IF	CITATIONS
55	Matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight vs. fastâ€atom bombardment and electrospray ionization mass spectrometry in the structural characterization of bacterial poly(3â€hydroxyalkanoates). Rapid Communications in Mass Spectrometry, 2015, 29, 811-820.	1.5	4
56	Technology assessment of new biodegradable poly(R-3-hydroxybutyrate-co -1,4-butylene adipate) copolymers for drug delivery. Journal of Applied Polymer Science, 2019, 136, 47233.	2.6	4
57	Title is missing!. Journal of Polymers and the Environment, 2000, 8, 97-102.	5.0	3
58	Novel pranoprofenâ€poly(ε aprolactone) conjugates: microwaveâ€assisted synthesis and structural characterization. Polymer International, 2021, 70, 604-611.	3.1	3
59	Sequencing Biodegradable and Potentially Biobased Polyesteramide of Sebacic Acid and 3-Amino-1-propanol by MALDI TOF-TOF Tandem Mass Spectrometry. Polymers, 2022, 14, 1500.	4.5	3
60	On the presence of 4-O-(1-carboxyethyl)-mannose in the capsular polysaccharide of Rhodococcus equi serotype 3. Carbohydrate Research, 1998, 312, 153-157.	2.3	1