List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1565938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Active Extensile Stress Promotes 3D Director Orientations and Flows. Physical Review Letters, 2022, 128, 048001.	7.8	14
2	Fifty years of â€~More is different'. Nature Reviews Physics, 2022, 4, 508-510.	26.6	15
3	Bacteria solve the problem of crowding by moving slowly. Nature Physics, 2021, 17, 205-210.	16.7	68
4	Memory effects, arches and polar defect ordering at the cross-over from wet to dry active nematics. Soft Matter, 2021, 17, 2500-2511.	2.7	11
5	ACTIVE NEMATICS AT INTERFACES AND SURFACES. , 2021, , .		0
6	Investigating the nature of active forces in tissues reveals how contractile cells can form extensile monolayers. Nature Materials, 2021, 20, 1156-1166.	27.5	69
7	Activity pulses induce spontaneous flow reversals in viscoelastic environments. Journal of the Royal Society Interface, 2021, 18, 20210100.	3.4	5
8	Morphology of Active Deformable 3D Droplets. Physical Review X, 2021, 11, .	8.9	11
9	Fluid flows on many scales. Nature Physics, 2021, 17, 756-756.	16.7	1
10	Submersed micropatterned structures control active nematic flow, topology, and concentration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
11	Coupling Turing stripes to active flows. Soft Matter, 2021, 17, 10716-10722.	2.7	6
12	Flow transitions and length scales of a channel-confined active nematic. Soft Matter, 2021, 17, 10640-10648.	2.7	11
13	Flow States and Transitions of an Active Nematic in a Three-Dimensional Channel. Physical Review Letters, 2020, 125, 148002.	7.8	30
14	Mesoscale modelling of polymer aggregate digestion. Current Research in Food Science, 2020, 3, 122-133.	5.8	4
15	Active inter-cellular forces in collective cell motility. Journal of the Royal Society Interface, 2020, 17, 20200312.	3.4	14
16	Collective chemotaxis of active nematic droplets. Physical Review E, 2020, 102, 020601.	2.1	7
17	Role of Friction in Multidefect Ordering. Physical Review Letters, 2020, 125, 218004.	7.8	25
18	Degenerate states, emergent dynamics and fluid mixing by magnetic rotors. Soft Matter, 2020, 16, 6484-6492.	2.7	6

#	Article	IF	CITATIONS
19	The 2020 motile active matter roadmap. Journal of Physics Condensed Matter, 2020, 32, 193001.	1.8	242
20	Activity Induced Nematic Order in Isotropic Liquid Crystals. Journal of Statistical Physics, 2020, 180, 699-709.	1.2	25
21	Polar jets of swimming bacteria condensed by a patterned liquid crystal. Nature Physics, 2020, 16, 481-487.	16.7	51
22	Active nematics with anisotropic friction: the decisive role of the flow aligning parameter. Soft Matter, 2020, 16, 2065-2074.	2.7	23
23	Active matter in a viscoelastic environment. Physical Review Fluids, 2020, 5, .	2.5	14
24	MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales. Mathematics in Engineering, 2020, 2, 230-252.	0.9	3
25	Sustained Oscillations of Epithelial Cell Sheets. Biophysical Journal, 2019, 117, 464-478.	0.5	100
26	Dynamics of individual Brownian rods in a microchannel flow. Soft Matter, 2019, 15, 5810-5814.	2.7	15
27	Controlling collective rotational patterns of magnetic rotors. Nature Communications, 2019, 10, 4696.	12.8	23
28	Reconfigurable flows and defect landscape of confined active nematics. Communications Physics, 2019, 2, .	5.3	60
29	Active matter invasion. Soft Matter, 2019, 15, 7538-7546.	2.7	15
30	Driven spheres, ellipsoids and rods in explicitly modeled polymer solutions. Journal of Physics Condensed Matter, 2019, 31, 234001.	1.8	7
31	Active transport in a channel: stabilisation by flow or thermodynamics. Soft Matter, 2019, 15, 1597-1604.	2.7	25
32	Emergence of Active Nematic Behavior in Monolayers of Isotropic Cells. Physical Review Letters, 2019, 122, 048004.	7.8	107
33	Coherent motion of dense active matter. European Physical Journal: Special Topics, 2019, 227, 2401-2411.	2.6	21
34	Magnetically-actuated artificial cilium: a simple theoretical model. Soft Matter, 2019, 15, 3864-3871.	2.7	21
35	Enhanced bacterial swimming speeds in macromolecular polymer solutions. Nature Physics, 2019, 15, 554-558.	16.7	90
36	Topological states in chiral active matter: Dynamic blue phases and active half-skyrmions. Journal of Chemical Physics, 2019, 150, 064909.	3.0	24

IF # ARTICLE CITATIONS Topology and Morphology of Self-Deforming Active Shells. Physical Review Letters, 2019, 123, 208001. 10.1063/1.5085282.1., 2019, , . 38 0 10.1063/1.5085282.6., 2019, , . Exopolymer Dynamics Driven by Sessile Flagellates. Biophysical Journal, 2018, 114, 514a. 40 0.5 0 Far-field theory for trajectories of magnetic ellipsoids in rectangular and circular channels. IMA Journal of Applied Mathematics, 2018, 83, 767-782. 1.6 Twist-induced crossover from two-dimensional to three-dimensional turbulence in active nematics. 42 2.1 29 Physical Review E, 2018, 98, 010601. Two-dimensional, blue phase tactoids. Molecular Physics, 2018, 116, 2856-2863. Active nematics. Nature Communications, 2018, 9, 3246. 12.8 44 414 A solvable model of axisymmetric and non-axisymmetric droplet bouncing. Soft Matter, 2017, 13, 985-994. 46 Topological defects in epithelia govern cell death and extrusion. Nature, 2017, 544, 212-216. 27.8 511 Nature's engines: active matter. Europhysics News, 2017, 48, 21-25. 48 Onset of meso-scale turbulence in active nematics. Nature Communications, 2017, 8, 15326. 12.8 120 Special issue on complex fluids at structured surfaces. Journal of Physics Condensed Matter, 2017, 29, 1.8 180301. Multi-scale statistics of turbulence motorized by active matter. Journal of Fluid Mechanics, 2017, 822, 50 3.4 43 762-773. Dancing disclinations in confined active nematics. Soft Matter, 2017, 13, 3853-3862. The macroscopic pancake bounce. European Journal of Physics, 2017, 38, 015006. 52 0.6 9 Electric-field-induced shape transition of nematic tactoids. Physical Review E, 2017, 96, 022706. 2.1

Julia M Yeomans

54 Using evaporation to control capillary instabilities in micro-systems. Soft Matter, 2017, 13, 8947-8956. 2.7 6

#	Article	IF	CITATIONS
55	Focusing and Sorting of Ellipsoidal Magnetic Particles in Microchannels. Physical Review Letters, 2017, 119, 198002.	7.8	39
56	Variation of the Contact Time of Droplets Bouncing on Cylindrical Ridges with Ridge Size. Langmuir, 2017, 33, 7583-7587.	3.5	52
57	Entrainment and scattering in microswimmer-colloid interactions. Physical Review Fluids, 2017, 2, .	2.5	17
58	Biopolymer dynamics driven by helical flagella. Physical Review Fluids, 2017, 2, .	2.5	9
59	Pore emptying transition during nucleation in hydrophobic nanopores. Soft Matter, 2016, 12, 3810-3819.	2.7	2
60	Hydrodynamics of micro-swimmers in films. Journal of Fluid Mechanics, 2016, 806, 35-70.	3.4	65
61	Translocation of Short Polymers through a Sieve. Biophysical Journal, 2016, 110, 505a.	0.5	0
62	Collective and convective effects compete in patterns of dissolving surface droplets. Soft Matter, 2016, 12, 5787-5796.	2.7	37
63	Active turbulence in active nematics. European Physical Journal: Special Topics, 2016, 225, 651-662.	2.6	53
64	Defect-Mediated Morphologies in Growing Cell Colonies. Physical Review Letters, 2016, 117, 048102.	7.8	114
65	Upstream Swimming in Microbiological Flows. Physical Review Letters, 2016, 116, 028104.	7.8	84
66	Active micromachines: Microfluidics powered by mesoscale turbulence. Science Advances, 2016, 2, e1501854.	10.3	63
67	Hotspots of boundary accumulation: dynamics and statistics of micro-swimmers in flowing films. Journal of the Royal Society Interface, 2016, 13, 20150936.	3.4	28
68	Stabilization of active matter by flow-vortex lattices and defect ordering. Nature Communications, 2016, 7, 10557.	12.8	115
69	Tracer trajectories and displacement due to a micro-swimmer near a surface. Journal of Fluid Mechanics, 2015, 773, 498-519.	3.4	37
70	Thermal Analog of Gimbal Lock in a Colloidal Ferromagnetic Janus Rod. Physical Review Letters, 2015, 115, 248301.	7.8	9
71	Multi-particle collision dynamics algorithm for nematic fluids. Soft Matter, 2015, 11, 5101-5110.	2.7	22
72	Symmetry breaking in drop bouncing on curved surfaces. Nature Communications, 2015, 6, 10034.	12.8	340

#	Article	IF	CITATIONS
73	Intrinsic free energy in active nematics. Europhysics Letters, 2015, 112, 28004.	2.0	36
74	Celebrating Soft Matter's 10th Anniversary: Cell division: a source of active stress in cellular monolayers. Soft Matter, 2015, 11, 7328-7336.	2.7	82
75	Driven active and passive nematics. Molecular Physics, 2015, 113, 2656-2665.	1.7	14
76	Instabilities and topological defects in active nematics. Europhysics Letters, 2014, 105, 18001.	2.0	111
77	Stirring by swimmers in confined microenvironments. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P04030.	2.3	20
78	An introduction to the hydrodynamics of swimming microorganisms. European Physical Journal: Special Topics, 2014, 223, 1771-1785.	2.6	53
79	Vorticity, defects and correlations in active turbulence. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130366.	3.4	99
80	Biphasic, Lyotropic, Active Nematics. Physical Review Letters, 2014, 113, 248303.	7.8	81
81	Active nematic materials with substrate friction. Physical Review E, 2014, 90, 062307.	2.1	48
82	Pancake Bouncing: Simulations and Theory and Experimental Verification. Langmuir, 2014, 30, 13021-13032.	3.5	75
83	Playful topology. Nature Materials, 2014, 13, 1004-1005.	27.5	20
84	Lattice-Boltzmann simulations of droplet evaporation. Soft Matter, 2014, 10, 8267-8275.	2.7	67
85	Pancake bouncing on superhydrophobic surfaces. Nature Physics, 2014, 10, 515-519.	16.7	748
86	Viscous fingering at ultralow interfacial tension. Soft Matter, 2013, 9, 10599.	2.7	24
87	Active Ciliated Surfaces Expel Model Swimmers. Langmuir, 2013, 29, 12770-12776.	3.5	21
88	Velocity Correlations in an Active Nematic. Physical Review Letters, 2013, 111, 118101.	7.8	163
89	Liquid Crystal Microfluidics for Tunable Flow Shaping. Physical Review Letters, 2013, 110, 048303.	7.8	94
90	Fluid transport by individual microswimmers. Journal of Fluid Mechanics, 2013, 726, 5-25.	3.4	78

#	Article	IF	CITATIONS
91	Modelling unidirectional liquid spreading on slanted microposts. Soft Matter, 2013, 9, 6862.	2.7	12
92	Anisotropic wetting and de-wetting of drops on substrates patterned with polygonal posts. Soft Matter, 2013, 9, 674-683.	2.7	37
93	Confined Active Nematic Flow in Cylindrical Capillaries. Physical Review Letters, 2013, 110, 026001.	7.8	80
94	Enhanced Motility of a Microswimmer in Rigid and Elastic Confinement. Physical Review Letters, 2013, 111, 138101.	7.8	53
95	Fluid Mixing by Curved Trajectories of Microswimmers. Physical Review Letters, 2013, 111, 188101.	7.8	59
96	SURFACE EVOLVER SIMULATIONS OF DROPS ON MICROPOSTS. International Journal of Modern Physics C, 2012, 23, 1240013.	1.7	8
97	Easier sieving through narrower pores: fluctuations and barrier crossing in flow-driven polymer translocation. Soft Matter, 2012, 8, 4306.	2.7	18
98	Length-dependent translocation of polymers through nanochannels. Soft Matter, 2012, 8, 1884-1892.	2.7	42
99	Meso-scale turbulence in living fluids. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14308-14313.	7.1	747
100	A circle swimmer at low Reynolds number. European Physical Journal E, 2012, 35, 70.	1.6	48
101	Anisotropy in the annihilation dynamics of umbilic defects in nematic liquid crystals. Physical Review E, 2012, 85, 021703.	2.1	47
102	Confinement Induced Splay-to-Bend Transition of Colloidal Rods. Physical Review Letters, 2012, 109, 108303.	7.8	40
103	Partial-post laplace barriers for virtual confinement, stable displacement, and >5 cm sâ~'1 electrowetting transport. Lab on A Chip, 2011, 11, 4221.	6.0	6
104	Confinement of knotted polymers in a slit. Molecular Physics, 2011, 109, 1289-1295.	1.7	20
105	Hydrodynamic synchronization at low Reynolds number. Soft Matter, 2011, 7, 3074.	2.7	151
106	Confining blue phase colloids to thin layers. Soft Matter, 2011, 7, 10144.	2.7	21
107	Lévy fluctuations and mixing in dilute suspensions of algae and bacteria. Journal of the Royal Society Interface, 2011, 8, 1314-1331.	3.4	56
108	Three-dimensional colloidal crystals in liquid crystalline blue phases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5188-5192	7.1	205

#	Article	IF	CITATIONS
109	International Liquid Crystal Conference 2010: across borders and multiscales. Liquid Crystals Today, 2011, 20, 31-33.	2.3	0
110	Anisotropic imbibition on surfaces patterned with polygonal posts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2519-2527.	3.4	23
111	Mesoscopic modelling of colloids in chiral nematics. Faraday Discussions, 2010, 144, 159-169.	3.2	100
112	CUDA simulations of active dumbbell suspensions. Chemical Physics, 2010, 375, 557-567.	1.9	16
113	Hydrodynamic Interactions at Low Reynolds Number. Experimental Mechanics, 2010, 50, 1283-1292.	2.0	9
114	Blue phases as templates for 3D colloidal photonic crystals. , 2010, , .		2
115	Lattice Boltzmann Simulations of Wetting and Drop Dynamics. Understanding Complex Systems, 2010, , 241-274.	0.6	14
116	Complex dynamics of knotted filaments in shear flow. Europhysics Letters, 2010, 92, 34003.	2.0	11
117	Effect of topology on dynamics of knots in polymers under tension. Europhysics Letters, 2010, 89, 20001.	2.0	34
118	Superhydrophobicity on Hairy Surfaces. Langmuir, 2010, 26, 16071-16083.	3.5	37
119	Modeling Receding Contact Lines on Superhydrophobic Surfaces. Langmuir, 2010, 26, 18162-18168.	3.5	57
120	Drop dynamics on hydrophobic and superhydrophobic surfaces. Faraday Discussions, 2010, 146, 153.	3.2	50
121	Emerging themes in soft matter: responsive and active soft materials. Soft Matter, 2010, 6, 703.	2.7	7
122	Using electrowetting to control interface motion in patterned microchannels. Soft Matter, 2010, 6, 2400.	2.7	7
123	Swimmer-tracer scattering at low Reynolds number. Soft Matter, 2010, 6, 4268.	2.7	49
124	Hydrodynamics of linked sphere model swimmers. Journal of Physics Condensed Matter, 2009, 21, 204108.	1.8	36
125	Knot-Controlled Ejection of a Polymer from a Virus Capsid. Physical Review Letters, 2009, 102, 088101.	7.8	72
126	Spontaneous flow states in active nematics: A unified picture. Europhysics Letters, 2009, 85, 18008.	2.0	96

8

#	Article	IF	CITATIONS
127	Hydrodynamic Synchronisation of Model Microswimmers. Journal of Statistical Physics, 2009, 137, 1001-1013.	1.2	22
128	Modelling capillary filling dynamics using lattice Boltzmann simulations. European Physical Journal: Special Topics, 2009, 171, 63-71.	2.6	39
129	Numerical results for the blue phases. Liquid Crystals, 2009, 36, 1215-1227.	2.2	37
130	Imbibition through an array of triangular posts. Journal of Physics Condensed Matter, 2009, 21, 464125.	1.8	34
131	Effect of encapsulated polymers and nanoparticles on shear deformation of droplets. Soft Matter, 2009, 5, 850.	2.7	2
132	Modeling the Corrugation of the Three-Phase Contact Line Perpendicular to a Chemically Striped Substrate. Langmuir, 2009, 25, 8357-8361.	3.5	13
133	Anisotropy of Water Droplets on Single Rectangular Posts. Langmuir, 2009, 25, 5619-5625.	3.5	43
134	Capillary filling in microchannels patterned by posts. Physical Review E, 2009, 80, 056309.	2.1	37
135	Shear and extensional deformation of droplets containing polymers and nanoparticles. Journal of Chemical Physics, 2009, 130, 234905.	3.0	14
136	Anisotropic hysteresis on ratcheted superhydrophobic surfaces. Soft Matter, 2009, 5, 2704.	2.7	29
137	Flow injection of polymers into nanopores. Soft Matter, 2009, 5, 4575.	2.7	42
138	Using the Lattice Boltzmann Algorithm to Explore Phase Ordering in Fluids. , 2009, , 121-152.		1
139	Lattice Boltzmann simulations of spontaneous flow in active liquid crystals: The role of boundary conditions. Journal of Non-Newtonian Fluid Mechanics, 2008, 149, 56-62.	2.4	21
140	Lattice Boltzmann simulation techniques for simulating microscopic swimmers. Computer Physics Communications, 2008, 179, 159-164.	7.5	6
141	Impalement of fakir drops. Europhysics Letters, 2008, 81, 26006.	2.0	273
142	Hydrodynamic of Active Liquid Crystals: A Hybrid Lattice Boltzmann Approach. Molecular Crystals and Liquid Crystals, 2008, 494, 293-308.	0.9	10
143	Contact line dynamics in binary lattice Boltzmann simulations. Physical Review E, 2008, 78, 056709.	2.1	59
144	Ejection Dynamics of Polymeric Chains from Viral Capsids: Effect of Solvent Quality. Biophysical Journal, 2008, 94, 4159-4164.	0.5	40

#	Article	IF	CITATIONS
145	The collapse transition on superhydrophobic surfaces. Europhysics Letters, 2008, 81, 36003.	2.0	135
146	Designing Synthetic, Pumping Cilia That Switch the Flow Direction in Microchannels. Langmuir, 2008, 24, 12102-12106.	3.5	59
147	Anisotropic Drop Morphologies on Corrugated Surfaces. Langmuir, 2008, 24, 7299-7308.	3.5	147
148	Dumb-bell swimmers. Europhysics Letters, 2008, 83, 34006.	2.0	57
149	Shearing Active Gels Close to the Isotropic-Nematic Transition. Physical Review Letters, 2008, 101, 068102.	7.8	137
150	Capillary filling in patterned channels. Physical Review E, 2008, 77, 067301.	2.1	80
151	Scattering of low-Reynolds-number swimmers. Physical Review E, 2008, 78, 045302.	2.1	40
152	Lattice Boltzmann study of convective drop motion driven by nonlinear chemical kinetics. Physical Review E, 2008, 78, 046308.	2.1	16
153	Modeling Contact Angle Hysteresis on Chemically Patterned and Superhydrophobic Surfaces. Langmuir, 2007, 23, 6019-6032.	3.5	223
154	Modeling microscopic swimmers at low Reynolds number. Journal of Chemical Physics, 2007, 126, 064703.	3.0	93
155	Hydrodynamic Interaction between Two Swimmers at Low Reynolds Number. Physical Review Letters, 2007, 99, 228103.	7.8	152
156	Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice Boltzmann simulations. Physical Review E, 2007, 76, 031921.	2.1	227
157	Hydrodynamics and Rheology of Active Liquid Crystals: A Numerical Investigation. Physical Review Letters, 2007, 98, 118102.	7.8	97
158	Viscoelastic Flows of Cholesteric Liquid Crystals. Molecular Crystals and Liquid Crystals, 2007, 465, 1-14.	0.9	4
159	Controlling Drop Size and Polydispersity Using Chemically Patterned Surfaces. Langmuir, 2007, 23, 956-959.	3.5	37
160	Flexoelectric Blue Phases. Physical Review Letters, 2007, 99, 067801.	7.8	20
161	Shear thinning in dilute polymer solutions. Journal of Chemical Physics, 2006, 125, 194906.	3.0	69
162	Mesoscale simulations: Lattice Boltzmann and particle algorithms. Physica A: Statistical Mechanics and Its Applications, 2006, 369, 159-184.	2.6	86

#	Article	IF	CITATIONS
163	Lattice Boltzmann simulations of drop dynamics. Mathematics and Computers in Simulation, 2006, 72, 160-164.	4.4	15
164	Stabilizing the blue phases. Physical Review E, 2006, 74, 061706.	2.1	90
165	Droplets on patterned substrates: water off a beetle's back. International Journal for Numerical Methods in Fluids, 2006, 50, 255-261.	1.6	5
166	Drop dynamics on chemically patterned surfaces. Europhysics Letters, 2006, 73, 740-746.	2.0	93
167	Permeative flows in cholesterics: Shear and Poiseuille flows. Journal of Chemical Physics, 2006, 124, 204906.	3.0	12
168	Lattice Boltzmann simulations of phase separation in chemically reactive binary fluids. Physical Review E, 2006, 73, 066124.	2.1	20
169	Electric-field-induced disclination migration in a Grandjean-Cano wedge. Journal of Applied Physics, 2006, 99, 064911.	2.5	7
170	Dynamics of sliding drops on superhydrophobic surfaces. Europhysics Letters, 2006, 75, 105-111.	2.0	24
171	Lattice Boltzmann algorithm to simulate isotropic-nematic emulsions. Physical Review E, 2006, 74, 041708.	2.1	29
172	Polymer Packaging and Ejection in Viral Capsids: Shape Matters. Physical Review Letters, 2006, 96, 208102.	7.8	112
173	Shear dynamics in cholesterics. Computer Physics Communications, 2005, 169, 122-125.	7.5	4
174	Modeling Droplets on Superhydrophobic Surfaces:Â Equilibrium States and Transitions. Langmuir, 2005, 21, 2624-2629.	3.5	208
175	Droplet dynamics on patterned substrates. Pramana - Journal of Physics, 2005, 64, 1019-1027.	1.8	6
176	Switching hydrodynamics in multi-domain, twisted nematic, liquid-crystal devices. Europhysics Letters, 2005, 71, 604-610.	2.0	8
177	Lattice Boltzmann Simulations of Cholesteric Liquid Crystals: Permeative Flows, Doubly Twisted Textures and Cubic Blue Phases. Molecular Crystals and Liquid Crystals, 2005, 435, 185/[845]-198/[858].	0.9	4
178	Modeling a tethered polymer in Poiseuille flow. Journal of Chemical Physics, 2005, 122, 164903.	3.0	44
179	Pattern formation arising from condensation of a homogeneous gas into a binary, phase-separating liquid. Physical Review E, 2005, 72, 021505.	2.1	3
180	Rheology of Cholesteric Blue Phases. Physical Review Letters, 2005, 95, 097801.	7.8	33

#	Article	IF	CITATIONS
181	Kinetics of the polymer collapse transition: The role of hydrodynamics. Physical Review E, 2005, 71, 061804.	2.1	76
182	Polymer translocation: The effect of backflow. Journal of Chemical Physics, 2005, 123, 234903.	3.0	29
183	Control of drop positioning using chemical patterning. Applied Physics Letters, 2005, 87, 024103.	3.3	34
184	Modeling the flow of fluid/particle mixtures in microchannels: Encapsulating nanoparticles within monodisperse droplets. Journal of Chemical Physics, 2005, 123, 224706.	3.0	36
185	A Coarse Grained Model for DNA and Polymer Packaging: Statics and Dynamics. Journal of Theoretical Medicine, 2005, 6, 115-117.	0.5	3
186	Numerical calculations of the phase diagram of cubic blue phases in cholesteric liquid crystals. Physical Review E, 2005, 71, 011703.	2.1	49
187	Kinetic Theory Derivation of the Transport Coefficients of Stochastic Rotation Dynamicsâ€. Journal of Physical Chemistry B, 2005, 109, 6505-6513.	2.6	67
188	Lattice Boltzmann simulations of contact line motion. II. Binary fluids. Physical Review E, 2004, 69, 031603.	2.1	152
189	Permeative Flows in Cholesteric Liquid Crystals. Physical Review Letters, 2004, 92, 188301.	7.8	45
190	Dynamics of polymer packaging. Journal of Chemical Physics, 2004, 121, 8635.	3.0	69
191	Pattern Formation in Binary Fluids Confined between Rough, Chemically Heterogeneous Surfaces. Physical Review Letters, 2004, 93, 184501.	7.8	30
192	Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems. Physical Review E, 2004, 69, 031602.	2.1	206
193	Stripe Formation in Differentially Forced Binary Systems. Physical Review Letters, 2004, 93, 118001.	7.8	36
194	Interplay between shear flow and elastic deformations in liquid crystals. Journal of Chemical Physics, 2004, 121, 582.	3.0	23
195	Lattice Boltzmann algorithm for three–dimensional liquid–crystal hydrodynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 1745-1754.	3.4	98
196	Mesoscopic Modelling of Droplets on Topologically Patterned Substrates. Lecture Notes in Computer Science, 2004, , 556-563.	1.3	4
197	Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces. Future Generation Computer Systems, 2004, 20, 993-1001.	7.5	80
198	Acoustic enhancement of diffusion in a porous material. Ultrasonics, 2003, 41, 531-538.	3.9	15

#	Article	IF	CITATIONS
199	Anisotropy of domain growth in nematic liquid crystals. Liquid Crystals, 2003, 30, 1455-1462.	2.2	11
200	Lattice Boltzmann simulations of attenuation-driven acoustic streaming. Journal of Physics A, 2003, 36, 5683-5694.	1.6	36
201	Jetting Micron-Scale Droplets onto Chemically Heterogeneous Surfaces. Langmuir, 2003, 19, 9818-9822.	3.5	98
202	Transport coefficients of a mesoscopic fluid dynamics model. Journal of Chemical Physics, 2003, 119, 6388-6395.	3.0	178
203	Hydrodynamics of domain growth in nematic liquid crystals. Physical Review E, 2003, 67, 051705.	2.1	43
204	Periodic Droplet Formation in Chemically Patterned Microchannels. Physical Review Letters, 2003, 91, 108303.	7.8	40
205	Rheology of distorted nematic liquid crystals. Europhysics Letters, 2003, 64, 406-412.	2.0	21
206	Droplet Spreading on Heterogeneous Surfaces Using a Three-Dimensional Lattice Boltzmann Model. Lecture Notes in Computer Science, 2003, , 1024-1033.	1.3	3
207	Using patterned substrates to promote mixing in microchannels. Physical Review E, 2002, 65, 031502.	2.1	36
208	Hydrodynamics of Topological Defects in Nematic Liquid Crystals. Physical Review Letters, 2002, 88, 105504.	7.8	168
209	Phase separation of a binary fluid in the presence of immobile particles: A lattice Boltzmann approach. Journal of Chemical Physics, 2002, 116, 6305-6310.	3.0	31
210	Lattice Boltzmann simulations of contact line motion in a liquid-gas system. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 485-495.	3.4	133
211	Modeling nematohydrodynamics in liquid crystal devices. Computer Physics Communications, 2002, 147, 7-12.	7.5	6
212	Domain Motion in Confined Liquid Crystals. Journal of Statistical Physics, 2002, 107, 187-202.	1.2	16
213	Polymer collapse in the presence of hydrodynamic interactions. European Physical Journal E, 2002, 9, 63-66.	1.6	78
214	Creating Localized Mixing Stations within Microfluidic Channels. Langmuir, 2001, 17, 7186-7190.	3.5	22
215	Effect of Stationary Particles on the Phase Separation of Binary Fluids. Materials Research Society Symposia Proceedings, 2001, 710, 1.	0.1	0
216	Simulations of liquid crystals in Poiseuille flow. Computational and Theoretical Polymer Science, 2001, 11, 389-395.	1.1	28

#	Article	IF	CITATIONS
217	Lattice Boltzmann simulations of liquid crystal hydrodynamics. Physical Review E, 2001, 63, 056702.	2.1	176
218	Flexoelectric Surface Switching of Bistable Nematic Devices. Physical Review Letters, 2001, 87, 275505.	7.8	41
219	Phase ordering in nematic liquid crystals. Physical Review E, 2001, 64, 021701.	2.1	33
220	Modeling viscous drag in binary fluid mixtures. Computer Physics Communications, 2000, 127, 105-112.	7.5	1
221	A particle-based algorithm for the hydrodynamics of binary fluid mixtures. Computer Physics Communications, 2000, 129, 282-288.	7.5	6
222	Dynamics of short polymer chains in solution. Europhysics Letters, 2000, 52, 231-237.	2.0	161
223	Lattice Boltzmann simulation of a binary fluid with different phase viscosities and its application to fingering in two dimensions. European Physical Journal B, 2000, 15, 133-141.	1.5	30
224	Simulations of liquid crystal hydrodynamics in the isotropic and nematic phases. Europhysics Letters, 2000, 52, 481-487.	2.0	61
225	Lattice Boltzmann simulations of complex fluids. IMA Journal of Management Mathematics, 2000, 11, 257-267.	1.6	2
226	PHASE ORDERING IN FLUIDS. , 2000, , 61-84.		16
227	Phase separation in two-dimensional fluids: The role of noise. Physical Review E, 1999, 59, R4741-R4744.	2.1	20
228	Phase separation under shear in two-dimensional binary fluids. Physical Review E, 1999, 59, 4366-4373.	2.1	102
229	Surface spin-flop and discommensuration transitions in antiferromagnets. Physical Review B, 1999, 59, 6239-6249.	3.2	24
230	Mesoscale modeling of contact line dynamics. Computer Physics Communications, 1999, 121-122, 236-239.	7.5	11
231	A lattice Boltzmann model of ternary fluid mixtures. Europhysics Letters, 1999, 45, 314-320.	2.0	110
232	Diffuse interface simulation of Marangoni convection. Physical Chemistry Chemical Physics, 1999, 1, 2157-2161.	2.8	5
233	Lattice Boltzmann simulations of complex fluids: viscoelastic effects under oscillatory shear. Faraday Discussions, 1999, 112, 237-248.	3.2	17
234	Modeling the Dynamics of Amphiphilic Fluids. International Journal of Modern Physics C, 1998, 09, 1469-1478.	1.7	11

#	Article	IF	CITATIONS
235	Spinodal Decomposition in Two-Dimensional Binary Fluids. International Journal of Modern Physics C, 1998, 09, 1373-1382.	1.7	11
236	Lattice Boltzmann simulations of lamellar and droplet phases. Physical Review E, 1998, 58, 480-485.	2.1	50
237	Breakdown of Scale Invariance in the Coarsening of Phase-Separating Binary Fluids. Physical Review Letters, 1998, 80, 1429-1432.	7.8	142
238	Lattice-Boltzmann Simulations of Complex Fluids. International Journal of Modern Physics C, 1997, 08, 783-792.	1.7	9
239	A complete devil's staircase in the Falicov - Kimball model. Journal of Physics A, 1997, 30, L711-L717.	1.6	5
240	Surface spin-flop phases and bulk discommensurations in antiferromagnets. Journal of Physics A, 1997, 30, L233-L238.	1.6	17
241	Spinodal Decomposition to a Lamellar Phase: Effects of Hydrodynamic Flow. Physical Review Letters, 1997, 78, 1695-1698.	7.8	109
242	Dissipative particle dynamics: The equilibrium for finite time steps. Europhysics Letters, 1997, 37, 511-516.	2.0	59
243	Effect of Shear on Droplets in a Binary Mixture. International Journal of Modern Physics C, 1997, 08, 773-782.	1.7	23
244	Lattice Boltzmann study of spinodal decomposition in structured fluids. Physica A: Statistical Mechanics and Its Applications, 1997, 240, 277-285.	2.6	6
245	Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Physical Review E, 1996, 54, 5041-5052.	2.1	1,110
246	Complete wetting in the three-dimensional transverse Ising model. Journal of Statistical Physics, 1996, 84, 323-335.	1.2	5
247	Splitting the multiphase point. Phase Transitions, 1996, 57, 49-58.	1.3	0
248	Lattice Boltzmann Study of Hydrodynamic Spinodal Decomposition. Physical Review Letters, 1995, 75, 4031-4034.	7.8	111
249	Lattice Boltzmann Simulation of Nonideal Fluids. Physical Review Letters, 1995, 75, 830-833.	7.8	1,114
250	Lifting of multiphase degeneracy by quantum fluctuations. Physical Review B, 1995, 52, 6684-6705.	3.2	6
251	Upsilon point in a spin model. Physical Review B, 1995, 52, 4353-4359.	3.2	5
252	Quantum Fluctuations in the Axial Next-Nearest-Neighbor Ising Model. Physical Review Letters, 1995, 74, 3045-3048.	7.8	18

#	Article	IF	CITATIONS
253	Modulated structures stabilized by spin softening: An expansion in inverse spin anisotropy. Physical Review B, 1995, 52, 9550-9563.	3.2	2
254	A Lattice Boltzmann Model of Binary-Fluid Mixtures. Europhysics Letters, 1995, 32, 463-468.	2.0	160
255	Wetting on lines and lattices of cylinders. Physical Review E, 1995, 51, 2053-2058.	2.1	7
256	Layering transitions in the Abraham model. Journal of Physics A, 1994, 27, 2939-2952.	1.6	0
257	Exact Solution for the Adsorption Transition of Row-Convex Polygons in the Limit of Zero-Area Fugacity. Europhysics Letters, 1994, 25, 1-4.	2.0	0
258	The Role of Spin Anisotropy in the Unbinding of Interfaces. Europhysics Letters, 1994, 28, 465-469.	2.0	3
259	Ground state of a model with competing interactions and spin anisotropy. Physical Review B, 1994, 49, 6412-6415.	3.2	12
260	Spin softening in models with competing interactions: A high-anisotropy expansion to all orders. Physical Review B, 1994, 50, 10385-10388.	3.2	8
261	Capillary condensation within an array of cylinders. Molecular Physics, 1993, 80, 877-884.	1.7	10
262	Low-temperature behaviour of the six-state clock model with competing interactions. Journal of Physics A, 1993, 26, 4887-4905.	1.6	5
263	Adsorption transition of directed vesicles in two dimensions. Journal of Physics A, 1993, 26, 5705-5712.	1.6	2
264	Capillary Condensation Between Spheres. Europhysics Letters, 1992, 18, 439-444.	2.0	42
265	Capillary condensation and prewetting between spheres. Journal of Physics Condensed Matter, 1992, 4, 10133-10138.	1.8	26
266	An interface potential approach to capillary condensation in a rectangular groove. Journal of Physics A, 1992, 25, 4275-4283.	1.6	19
267	Zero-temperature properties of randomly self-interacting polymers. Journal of Statistical Physics, 1992, 69, 857-868.	1.2	3
268	Competition between self-attraction and adsorption in directed self-avoiding polymers. Physica A: Statistical Mechanics and Its Applications, 1991, 177, 443-452.	2.6	19
269	Duration of visible persistence in relation to stimulus complexity. Perception & Psychophysics, 1991, 50, 475-489.	2.3	7
270	The effect of attractive monomer-monomer interactions on adsorption of a polymer chain. Journal of Physics A, 1991, 24, 827-849.	1.6	41

#	Article	IF	CITATIONS
271	Critical behavior at the theta point of self-avoiding walks on a Manhattan lattice. Journal of Physics A, 1991, 24, L933-L939.	1.6	1
272	Universality of surface exponents of self-avoiding walks on a Manhattan lattice. Journal of Physics A, 1991, 24, 1867-1874.	1.6	5
273	Collapse transition in a simple polymer model: exact results. Journal of Physics A, 1990, 23, L975-L979.	1.6	28
274	Adsorption of directed polymers. Journal of Physics A, 1990, 23, L109-L115.	1.6	23
275	Wetting on a cylindrical substrate off coexistence. Journal of Physics A, 1990, 23, 5655-5660.	1.6	5
276	Wetting on spherical and cylindrical substrates: Global phase diagrams. Physical Review B, 1989, 40, 666-679.	3.2	73
277	Wetting between concentric spheres. Journal of Physics A, 1989, 22, L1069-L1074.	1.6	2
278	Model for binary alloys: An Ising model with isotropic competing interactions. Physical Review B, 1989, 40, 479-492.	3.2	22
279	The Theory and Application of Axial Ising Models. Solid State Physics, 1988, 41, 151-200.	0.5	106
280	Line Phase Transitions. Physical Review Letters, 1988, 61, 2221-2224.	7.8	25
281	A series approach to wetting and layering transitions. II. Solid-on-solid models. Journal of Physics A, 1988, 21, 159-171.	1.6	5
282	A series approach to wetting and layering transitions. III. The chiral clock model. Journal of Physics A, 1988, 21, 173-195.	1.6	2
283	Interface layering transitions in novel geometries. Journal of Physics A, 1988, 21, L1107-L1112.	1.6	2
284	An Ising Model with Isotropic Competing Interactions and Binary Alloys. Europhysics Letters, 1988, 5, 575-582.	2.0	12
285	A microscopic model of annealed vacancies in long-period structures. Phase Transitions, 1988, 11, 325-334.	1.3	1
286	Competing Interactions and the Origins of Polytypism. Springer Proceedings in Physics, 1988, , 60-73.	0.2	1
287	A series approach to wetting and layering transitions. I. Potts models. Journal of Physics A, 1987, 20, 5635-5655.	1.6	3
288	Wetting velocity near the directed percolation threshold. Journal of Physics A, 1987, 20, L325-L329.	1.6	4

#	Article	IF	CITATIONS
289	Layering transitions at an interface in the Blume-Capel model. Journal of Physics A, 1987, 20, 2989-2999.	1.6	4
290	The Application of Axial Ising Models to the Description of Modulated Order. NATO ASI Series Series B: Physics, 1987, , 45-54.	0.2	0
291	Persisting arguments about visual persistence: Reply to Long. Perception & Psychophysics, 1986, 39, 225-230.	2.3	8
292	Layering transitions at an interface. Journal of Physics A, 1986, 19, 3165-3184.	1.6	9
293	On the critical dynamics of one-dimensional Potts models. Journal of Physics A, 1986, 19, 2671-2673.	1.6	11
294	Sensory registration and informational persistence Journal of Experimental Psychology: Human Perception and Performance, 1986, 12, 343-360.	0.9	54
295	A model for polysomatism. Mineralogical Magazine, 1986, 50, 149-156.	1.4	13
296	The axial Ising model with third neighbour interactions: Low temperature expansion. Physica A: Statistical Mechanics and Its Applications, 1985, 134, 84-122.	2.6	26
297	The energetics of polytypic structures: a computer simulation of magnesium silicate spinelloids. Acta Crystallographica Section B: Structural Science, 1985, 41, 231-239.	1.8	26
298	The energetics of polytypic structures: further applications of the ANNNI model. Acta Crystallographica Section B: Structural Science, 1985, 41, 310-319.	1.8	16
299	Stimulus duration and partial report performance. Perception & Psychophysics, 1985, 37, 163-169.	2.3	29
300	Axial Ising model with third-neighbour interactions. Journal of Physics C: Solid State Physics, 1985, 18, L393-L399.	1.5	47
301	On the Harris criterion for hierarchical lattices. Journal of Physics A, 1985, 18, L53-L55.	1.6	10
302	Annealed defects in long-period structures. Journal of Physics C: Solid State Physics, 1985, 18, L163-L168.	1.5	11
303	The instability of long-period commensurate phases in the presence of quenched impurities. Journal of Physics C: Solid State Physics, 1985, 18, 3911-3918.	1.5	13
304	Can long-period phases remain stable in the presence of quenched impurities?. Journal of Physics C: Solid State Physics, 1985, 18, 857-867.	1.5	14
305	Bulk and interface scaling properties of the chiral clock model. Journal of Physics A, 1985, 18, 2343-2355.	1.6	28
306	Low-temperature series analysis of multilayer adsorption at surfaces. Journal of Physics A, 1985, 18, L983-L988.	1.6	14

#	Article	IF	CITATIONS
307	Finite-size scaling of two-dimensional axial next-nearest-neighbor Ising models. Physical Review B, 1985, 31, 7166-7170.	3.2	43
308	A low-temperature mean-field theory of the three-dimensional, p-state chiral clock model. Journal of Physics C: Solid State Physics, 1984, 17, 3601-3614.	1.5	9
309	Wavevector scaling and the phase diagram of the chiral clock model. Journal of Physics A, 1984, 17, L179-L184.	1.6	42
310	Analysis of the multiphase region in the three-state chiral clock model. Physica A: Statistical Mechanics and Its Applications, 1984, 127, 1-37.	2.6	29
311	ANNNI and clock models. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1984, 127, 187-192.	0.9	1
312	The application of the ANNNI model to polytypic behaviour. Acta Crystallographica Section B: Structural Science, 1984, 40, 448-454.	1.8	77
313	The Role of Domain Walls in the Critical Behaviour of the Three-dimensional P-State Asymmetric Clock Model. NATO ASI Series Series B: Physics, 1984, , 293-300.	0.2	0
314	Interface properties of the two-dimensional Blume-Emery-Griffiths model. Journal of Physics A, 1983, 16, 2789-2800.	1.6	61
315	Phase diagram of the ANNNI model in a field using a low-temperature series technique. Journal of Physics C: Solid State Physics, 1983, 16, 5305-5320.	1.5	7
316	Tricritical behaviour in a bond-dilute spin model. Journal of Physics C: Solid State Physics, 1983, 16, L345-L351.	1.5	31
317	Low-temperature analysis of the ANNNI model in a field. Journal of Physics C: Solid State Physics, 1982, 15, L1053-L1057.	1.5	13
318	Low-temperature analysis of the p-state asymmetric clock model for general p. Journal of Physics C: Solid State Physics, 1982, 15, 7305-7323.	1.5	26
319	A Monte Carlo study of the asymmetric clock or chiral Potts model in two dimensions. European Physical Journal B, 1982, 46, 311-318.	1.5	90
320	Three-component model and tricritical points: A renormalization-group study. Two dimensions. Physical Review B, 1981, 23, 3448-3459.	3.2	94
321	Directed percolation: a finite-size renormalisation group approach. Journal of Physics A, 1981, 14, L163-L168.	1.6	119
322	Exactly soluble Ising models exhibiting multiphase points. Journal of Applied Physics, 1981, 52, 2028-2030.	2.5	2
323	Many commensurate phases in the chiral Potts or asymmetric clock models. Journal of Physics C: Solid State Physics, 1981, 14, L1111-L1111.	1.5	0
324	Three-component model and tricritical points: A renormalization-group study. II. General dimensions and the three-phase monohedron. Physical Review B, 1981, 24, 2825-2840.	3.2	42

#	Article	IF	CITATIONS
325	Multiphase behavior and modulated ordering in soluble Ising models. Physical Review B, 1981, 23, 180-185.	3.2	26
326	Many commensurate phases in the chiral Potts or asymmetric clock models. Journal of Physics C: Solid State Physics, 1981, 14, L835-L839.	1.5	34
327	Critical properties of the mixed Ising ferromagnet. Journal of Physics C: Solid State Physics, 1980, 13, 85-101.	1.5	16
328	Critical behaviour of the dilute Ashkin-Teller-Potts model. Journal of Physics C: Solid State Physics, 1980, 13, L239-L244.	1.5	29
329	Critical Properties of the Mixed Ising Ferromagnet. , 1980, , 189-194.		0
330	Critical properties of site- and bond-diluted Ising ferromagnets. Journal of Physics C: Solid State Physics, 1979, 12, 347-360.	1.5	71
331	A renormalisation group approach for the mixed Ising model. Journal of Physics C: Solid State Physics, 1979, 12, L169-L172.	1.5	23
332	A renormalisation group approach for site-diluted resistor networks. Journal of Physics C: Solid State Physics, 1978, 11, 4095-4104.	1.5	26
333	Critical properties of the site-diluted Ising ferromagnet. Journal of Physics C: Solid State Physics, 1978, 11, L525-L528.	1.5	28
334	Self-sustained oscillations of active viscoelastic matter. Journal of Physics A: Mathematical and Theoretical, 0, , .	2.1	1