
Christoph Patrick Beier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1565747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of Long-term Survival After Status Epilepticus Using the ACD Score. JAMA Neurology, 2022, 79, 604.	9.0	29
2	lmaging progressive peripheral and central dysfunction in isolated REM sleep behaviour disorder after 3 years of follow-up. Parkinsonism and Related Disorders, 2022, 101, 99-104.	2.2	5
3	Risk factors of paradoxical reactions to anti-seizure medication in genetic generalized epilepsy. Epilepsy Research, 2021, 170, 106547.	1.6	8
4	Social outcome and psychiatric comorbidity of generalized epilepsies – A case ontrol study. Epilepsia, 2021, 62, 1158-1169.	5.1	14
5	Safety and feasibility of an intensive epilepsy nurse-based treatment course. Seizure: the Journal of the British Epilepsy Association, 2021, 86, 35-40.	2.0	0
6	Magnetic evoked potential polyphasia in idiopathic/genetic generalized epilepsy: An endophenotype not associated with treatment response. Clinical Neurophysiology, 2021, 132, 1499-1504.	1.5	4
7	The burden of disease of idiopathic/genetic generalized epilepsy – A nationwide online survey. Epilepsy and Behavior, 2021, 123, 108232.	1.7	3
8	Epidemiology and outcome of idiopathic generalized epilepsy in adults. European Journal of Neurology, 2020, 27, 676-684.	3.3	44
9	Patterns and prognostic markers for treatment response in generalized epilepsies. Neurology, 2020, 95, e2519-e2528.	1.1	19
10	Severe hypersomnia after unilateral infarction in the pulvinar nucleus– a case report. BMC Neurology, 2020, 20, 442.	1.8	2
11	The clinical spectrum of familial and sporadic idiopathic generalized epilepsy. Epilepsy Research, 2020, 165, 106374.	1.6	6
12	Alternative lengthening of telomeres is the major telomere maintenance mechanism in astrocytoma with isocitrate dehydrogenase 1 mutation. Journal of Neuro-Oncology, 2020, 147, 1-14.	2.9	18
13	Transient epileptic amnesia diagnosed using longâ€ŧerm electroencephalography. Epileptic Disorders, 2020, 22, 225-228.	1.3	2
14	Comment regarding: "Predictors of long-term mortality in status epilepticus― Epilepsy and Behavior, 2019, 93, 150.	1.7	0
15	Nonconvulsive Status Epilepticus: Validating the Salzburg Criteria Against an Expert EEG Examiner. Journal of Clinical Neurophysiology, 2019, 36, 141-145.	1.7	22
16	High longâ€ŧerm mortality after incident status epilepticus in adults: Results from a populationâ€based study. Epilepsia, 2019, 60, 33-41.	5.1	21
17	Epidemiology-Based Mortality Score is Associated with Long-Term Mortality after Status Epilepticus. Neurocritical Care, 2019, 31, 135-141.	2.4	8
18	Ictal piloerection is associated with high-grade glioma and autoimmune encephalitis—Results from a systematic review. Seizure: the Journal of the British Epilepsy Association, 2019, 64, 1-5.	2.0	9

CHRISTOPH PATRICK BEIER

#	Article	IF	CITATIONS
19	High expression of cystine–glutamate antiporter xCT (SLC7A11) is an independent biomarker for epileptic seizures at diagnosis in glioma. Journal of Neuro-Oncology, 2018, 138, 49-53.	2.9	40
20	The Neuroradiological Spectra of Adult and Pediatric Medulloblastoma Differ. Clinical Neuroradiology, 2018, 28, 99-107.	1.9	8
21	Aberrant neuronal differentiation is common in glioma but is associated neither with epileptic seizures nor with better survival. Scientific Reports, 2018, 8, 14965.	3.3	6
22	In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet Neurology, The, 2018, 17, 618-628.	10.2	228
23	Hormonal contraception is not associated with increased risk for seizures in the general population: results from a cohort study using The Health Improvement Network. European Journal of Clinical Pharmacology, 2018, 74, 1175-1180.	1.9	4
24	Resistance to valproic acid as predictor of treatment resistance in genetic generalized epilepsies. Epilepsia, 2017, 58, e64-e69.	5.1	50
25	Glioblastoma cancer stem cell lines express functional acid sensing ion channels ASIC1a and ASIC3. Scientific Reports, 2017, 7, 13674.	3.3	37
26	TLR4 in glioblastoma—when cancer stem cells ignore "danger signals― Stem Cell Investigation, 2017, 4, 66-66.	3.0	1
27	Predictive value of the Status Epilepticus Severity Score (STESS) and its components for long-term survival. BMC Neurology, 2016, 16, 213.	1.8	31
28	Chemotherapy increases long-term survival in patients with adult medulloblastoma—a literature-based meta-analysis. Neuro-Oncology, 2016, 18, 408-416.	1.2	55
29	Chemoresistance and Chemotherapy Targeting Stem-Like Cells in Malignant Glioma. Advances in Experimental Medicine and Biology, 2015, 853, 111-138.	1.6	43
30	High levels of c-Met is associated with poor prognosis in glioblastoma. Journal of Neuro-Oncology, 2015, 122, 517-527.	2.9	62
31	Successful treatment of refractory absence status epilepticus with lacosamide. Journal of Neurology, 2014, 261, 2025-2027.	3.6	11
32	Glioblastoma cancer stem cells – From concept to clinical application. Cancer Letters, 2013, 338, 32-40.	7.2	67
33	Aldehyde dehydrogenase 1A1—a new mediator of resistance to temozolomide in glioblastoma. Neuro-Oncology, 2012, 14, 1452-1464.	1.2	80
34	The Cancer Stem Cell Subtype Determines Immune Infiltration of Glioblastoma. Stem Cells and Development, 2012, 21, 2753-2761.	2.1	79
35	Efficacy of clinically relevant temozolomide dosing schemes in glioblastoma cancer stem cell lines. Journal of Neuro-Oncology, 2012, 109, 45-52.	2.9	41
36	Comprehensive Small Animal Imaging Strategies on a Clinical 3 T Dedicated Head MR-Scanner; Adapted Methods and Sequence Protocols in CNS Pathologies. PLoS ONE, 2011, 6, e16091.	2.5	18

CHRISTOPH PATRICK BEIER

#	Article	IF	CITATIONS
37	¹ H-Nuclear Magnetic Resonance Spectroscopy of Glioblastoma Cancer Stem Cells. Stem Cells and Development, 2011, 20, 2189-2195.	2.1	16
38	CAMTA1 is a novel tumour suppressor regulated by miR-9/9 [*] in glioblastoma stem cells. EMBO Journal, 2011, 30, 4309-4322.	7.8	141
39	Identification of CD133â`'/Telomeraselow Progenitor Cells in Glioblastoma-Derived Cancer Stem Cell Lines. Cellular and Molecular Neurobiology, 2011, 31, 337-343.	3.3	20
40	Chemoresistance of glioblastoma cancer stem cells - much more complex than expected. Molecular Cancer, 2011, 10, 128.	19.2	265
41	Fas/CD95 Regulatory Protein Faim2 Is Neuroprotective after Transient Brain Ischemia. Journal of Neuroscience, 2011, 31, 225-233.	3.6	43
42	Transcriptional Profiles of CD133+ and CD133â^' Glioblastoma-Derived Cancer Stem Cell Lines Suggest Different Cells of Origin. Cancer Research, 2010, 70, 2030-2040.	0.9	237
43	Lactate promotes glioma migration by TGF-β2–dependent regulation of matrix metalloproteinase-2. Neuro-Oncology, 2009, 11, 368-380.	1.2	204
44	Immunoselection of Breast and Ovarian Cancer Cells with Trastuzumab and Natural Killer Cells: Selective Escape of CD44high/CD24low/HER2low Breast Cancer Stem Cells. Cancer Research, 2009, 69, 8058-8066.	0.9	118
45	RNOP-09: Pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma - a phase II study. BMC Cancer, 2009, 9, 308.	2.6	83
46	CD95/Fas in the Brain—Not Just a Killer. Cell Stem Cell, 2009, 5, 128-130.	11.1	12
47	CD133 Expression and Cancer Stem Cells Predict Prognosis in Highâ€grade Oligodendroglial Tumors. Brain Pathology, 2008, 18, 370-377.	4.1	137
48	Temozolomide Preferentially Depletes Cancer Stem Cells in Glioblastoma. Cancer Research, 2008, 68, 5706-5715.	0.9	269
49	CD133+ and CD133â ^{~,} Glioblastoma-Derived Cancer Stem Cells Show Differential Growth Characteristics and Molecular Profiles. Cancer Research, 2007, 67, 4010-4015.	0.9	1,027
50	CD95/Fas mediates cognitive improvement after traumatic brain injury. Cell Research, 2007, 17, 732-734.	12.0	11
51	A large, erosive intraspinal and paravertebral gout tophus. Journal of Neurosurgery: Spine, 2005, 3, 485-487.	1.7	34
52	FasL (CD95L/APO-1L) Resistance of Neurons Mediated by Phosphatidylinositol 3-Kinase-Akt/Protein Kinase B-Dependent Expression of Lifeguard/Neuronal Membrane Protein 35. Journal of Neuroscience, 2005, 25, 6765-6774.	3.6	53
53	Moving along with Ross Syndrome. Journal of Neurology, 2004, 251, 1402-1403.	3.6	5
54	Cascade of Caspase Activation in Potassium-Deprived Cerebellar Granule Neurons: Targets for Treatment with Peptide and Protein Inhibitors of Apoptosis. Molecular and Cellular Neurosciences, 2001, 17, 717-731.	2.2	77