Martin Rodriguez-Porcel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1565525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myocarditis Following Coronavirus Disease 2019 mRNA Vaccine: A Case Series and Incidence Rate Determination. Clinical Infectious Diseases, 2022, 75, e749-e754.	5.8	41
2	Stem Cellâ^'Laden Coaxially Electrospun Fibrous Scaffold for Regenerative Engineering Applications. Current Protocols, 2021, 1, e13.	2.9	3
3	Cardio Phenotypic Potential of Mesenchymal Stem Cells. Current Protocols, 2021, 1, e62.	2.9	0
4	Senolytic agents lessen the severity of abdominal aortic aneurysm in aged mice. Experimental Gerontology, 2021, 151, 111416.	2.8	13
5	PET Imaging in Cardiac Sarcoidosis: A Narrative Review with Focus on Novel PET Tracers. Pharmaceuticals, 2021, 14, 1286.	3.8	26
6	The Myocardial Microenvironment Modulates the Biology of Transplanted Mesenchymal Stem Cells. Molecular Imaging and Biology, 2020, 22, 948-957.	2.6	3
7	Pathway-specific reporter genes to study stem cell biology. Stem Cells, 2020, 38, 808-814.	3.2	3
8	Delayed Intramyocardial Delivery of Stem Cells after Ischemia Reperfusion Injury in a Murine Model. Journal of Visualized Experiments, 2020, , .	0.3	0
9	Positron emission tomography for diagnosis of prosthetic valve endocarditis. Journal of Nuclear Cardiology, 2019, 26, 677-678.	2.1	Ο
10	Phase analysis single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) detects dyssynchrony in myocardial scar and increases specificity of MPI. EJNMMI Research, 2019, 9, 11.	2.5	9
11	Molecular Imaging of Stem Cells. StemJournal, 2019, 1, 27-46.	0.6	4
12	The impact of combined cardiopulmonary exercise testing and SPECT myocardial perfusion imaging on downstream evaluation and management. Journal of Nuclear Cardiology, 2019, 26, 92-106.	2.1	4
13	Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells. Methods in Molecular Biology, 2017, 1553, 227-239.	0.9	1
14	Intravascular Delivery of Biologics to the Rat Kidney. Journal of Visualized Experiments, 2016, , .	0.3	1
15	Noninvasive Monitoring of the Mitochondrial Function in Mesenchymal Stromal Cells. Molecular Imaging and Biology, 2016, 18, 510-518.	2.6	6
16	Mesenchymal Stromal Cells Improve Renovascular Function in Polycystic Kidney Disease. Cell Transplantation, 2015, 24, 1687-1698.	2.5	26
17	Renin Inhibition Improves the Survival of Mesenchymal Stromal Cells in a Mouse Model of Myocardial Infarction. Journal of Cardiovascular Translational Research, 2014, 7, 560-569.	2.4	7
18	Noninvasive Monitoring of Oxidative Stress in Transplanted Mesenchymal StromalÂCells. JACC: Cardiovascular Imaging, 2013, 6, 795-802.	5.3	27

#	Article	IF	CITATIONS
19	Polycystic Kidneys Have Decreased Vascular Density: A Micro T Study. Microcirculation, 2013, 20, 183-189.	1.8	26
20	Noninvasive Imaging of Hypoxia-Inducible Factor-1α Gene Therapy for Myocardial Ischemia. Human Gene Therapy Methods, 2013, 24, 279-288.	2.1	7
21	Endothelial Dysfunction Occurs prior to Clinical Evidence of Polycystic Kidney Disease. American Journal of Nephrology, 2013, 38, 233-240.	3.1	19
22	Cardiovascular Molecular Imaging as a Tool to Study Biology. Theranostics, 2013, 3, 914-915.	10.0	1
23	Cell Tracking and the Development of Cell-Based Therapies. JACC: Cardiovascular Imaging, 2012, 5, 559-565.	5.3	20
24	Emerging roles for integrated imaging modalities in cardiovascular cell-based therapeutics: a clinical perspective. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 165-181.	6.4	17
25	Improved survival of mesenchymal stromal cell after hypoxia preconditioning: Role of oxidative stress. Life Sciences, 2011, 88, 65-73.	4.3	89
26	In vivo imaging for stem cell therapy: new developments and future challenges. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 400-405.	6.4	10
27	In Vivo Imaging and Monitoring of Transplanted Stem Cells: Clinical Applications. Current Cardiology Reports, 2010, 12, 51-58.	2.9	59
28	Antioxidants Improve Early Survival of Cardiomyoblasts After Transplantation to the Myocardium. Molecular Imaging and Biology, 2010, 12, 325-334.	2.6	26
29	Imaging Gene Expression in Human Mesenchymal Stem Cells: From Small to Large Animals. Radiology, 2009, 252, 117-127.	7.3	83
30	Comparison of Optical Bioluminescence Reporter Gene and Superparamagnetic Iron Oxide MR Contrast Agent as Cell Markers for Noninvasive Imaging of Cardiac Cell Transplantation. Molecular Imaging and Biology, 2009, 11, 178-187.	2.6	84
31	Noninvasive monitoring of myocardial angiogenesis. Current Cardiovascular Imaging Reports, 2009, 2, 59-66.	0.6	6
32	Reporter Gene Imaging Following Percutaneous Delivery in Swine. Journal of the American College of Cardiology, 2008, 51, 595-597.	2.8	20
33	Imaging of VEGF Receptor in a Rat Myocardial Infarction Model Using PET. Journal of Nuclear Medicine, 2008, 49, 667-673.	5.0	102
34	Noninvasive Evaluation of Immunosuppressive Drug Efficacy on Acute Donor Cell Survival. Molecular Imaging and Biology, 2006, 8, 163-170.	2.6	16
35	Functional and structural remodeling of the myocardial microvasculature in early experimental hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H978-H984.	3.2	48
36	Role of Oxidative Stress in Remodeling of the Myocardial Microcirculation in Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1746-1752.	2.4	41

#	Article	IF	CITATIONS
37	Image-Guided Cardiac Cell Delivery Using High-Resolution Small-Animal Ultrasound. Molecular Therapy, 2005, 12, 1142-1147.	8.2	55
38	Pathways of Renal Fibrosis and Modulation of Matrix Turnover in Experimental Hypercholesterolemia. Hypertension, 2005, 46, 772-779.	2.7	64
39	Antioxidant Intervention Attenuates Myocardial Neovascularization in Hypercholesterolemia. Circulation, 2004, 109, 2109-2115.	1.6	121
40	Long-Term Antioxidant Intervention Improves Myocardial Microvascular Function in Experimental Hypertension. Hypertension, 2004, 43, 493-498.	2.7	41
41	Antioxidant Intervention Blunts Renal Injury in Experimental Renovascular Disease. Journal of the American Society of Nephrology: JASN, 2004, 15, 958-966.	6.1	114
42	Cortical Microvascular Remodeling in the Stenotic Kidney. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1854-1859.	2.4	141
43	Hypertension exacerbates the effect of hypercholesterolemia on the myocardial microvasculature. Cardiovascular Research, 2003, 58, 213-221.	3.8	31
44	Hypercholesterolemia and Hypertension Have Synergistic Deleterious Effects on Coronary Endothelial Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 885-891.	2.4	71
45	Chronic antioxidant supplementation attenuates nuclear factor-l̂®B activation and preserves endothelial function in hypercholesterolemic pigs. Cardiovascular Research, 2002, 53, 1010-1018.	3.8	66
46	Distinct Renal Injury in Early Atherosclerosis and Renovascular Disease. Circulation, 2002, 106, 1165-1171.	1.6	235
47	Hypercholesterolemia impairs myocardial perfusion and permeability: role of oxidative stress and endogenous scavenging activity. Journal of the American College of Cardiology, 2001, 37, 608-615.	2.8	78
48	Increased Oxidative Stress in Experimental Renovascular Hypertension. Hypertension, 2001, 37, 541-546.	2.7	247
49	Altered Myocardial Microvascular 3D Architecture in Experimental Hypercholesterolemia. Circulation, 2000, 102, 2028-2030.	1.6	64