
Ana P Costa-Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1564604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oncostatin M induces RIGâ€I and MDA5 expression and enhances the doubleâ€stranded RNA response in fibroblasts. Journal of Cellular and Molecular Medicine, 2017, 21, 3087-3099.	3.6	14
2	Phosphorylation of Janus kinase 1 (JAK1) by AMP-activated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling. Science Signaling, 2016, 9, ra109.	3.6	80
3	Control of gp130 expression by the mitogen-activated protein kinase ERK2. Oncogene, 2014, 33, 2255-2263.	5.9	17
4	Regulation of IL-6-type cytokine responses by MAPKs. Biochemical Society Transactions, 2014, 42, 59-62.	3.4	18
5	DAPK2 is a novel modulator of TRAIL-induced apoptosis. Cell Death and Differentiation, 2014, 21, 1780-1791.	11.2	29
6	Signal transducers and activators of transcription—from cytokine signalling to cancer biology. Biochimica Et Biophysica Acta: Reviews on Cancer, 2011, 1816, 38-49.	7.4	38
7	A Novel Requirement for Janus Kinases as Mediators of Drug Resistance Induced by Fibroblast Growth Factor-2 in Human Cancer Cells. PLoS ONE, 2011, 6, e19861.	2.5	33
8	Dysregulation of janus kinases and signal transducers and activators of transcription in cancer. American Journal of Cancer Research, 2011, 1, 806-16.	1.4	9
9	Distinct Clinical Phenotypes Associated with JAK2V617F Reflect Differential STAT1 Signaling. Cancer Cell, 2010, 18, 524-535.	16.8	150
10	Multiple kinases in the interferon-Î ³ response. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6051-6056.	7.1	14
11	<i>P</i> -STAT1 mediates higher-order chromatin remodelling of the human MHC in response to IFNÎ ³ . Journal of Cell Science, 2007, 120, 3262-3270.	2.0	74
12	Signaling through a Mutant IFN-γ Receptor. Journal of Immunology, 2005, 175, 5958-5965.	0.8	8
13	Role of Tyrosine 441 of Interferon-Î ³ Receptor Subunit 1 in SOCS-1-mediated Attenuation of STAT1 Activation. Journal of Biological Chemistry, 2005, 280, 1849-1853.	3.4	62
14	Of JAKs, STATs, blind watchmakers, jeeps and trains. FEBS Letters, 2003, 546, 1-5.	2.8	75
15	JAK/STAT Signaling: A Tale of Jeeps and Trains. , 2003, , 355-365.		0
16	Cell-type and Donor-specific Transcriptional Responses to Interferon-α. Journal of Biological Chemistry, 2002, 277, 49428-49437.	3.4	74
17	Mutational switch of an IL-6 response to an interferon-Â-like response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8043-8047.	7.1	258
18	The Antiviral Response to Gamma Interferon. Journal of Virology, 2002, 76, 9060-9068.	3.4	28

ANA P COSTA-PEREIRA

#	Article	IF	CITATIONS
19	Analysis of Gene Expression Using High-Density and IFN-Î ³ -Specific Low-Density cDNA Arrays. Genomics, 2001, 77, 50-57.	2.9	27
20	A completely foreign receptor can mediate an interferon-gamma-like response. EMBO Journal, 2001, 20, 5431-5442.	7.8	30
21	Activation of SAPK/JNK by camptothecin sensitizes androgen-independent prostate cancer cells to Fas-induced apoptosis. British Journal of Cancer, 2000, 82, 1827-1834.	6.4	31
22	Detection of Molecular Events During Apoptosis by Flow Cytometry. , 2000, 38, 71-83.		0
23	Camptothecin sensitizes androgen-independent prostate cancer cells to anti-Fas-induced apoptosis. British Journal of Cancer, 1999, 80, 371-378.	6.4	34
24	Molecular and cellular biology of prostate cancer—the role of apoptosis as a target for therapy. Prostate Cancer and Prostatic Diseases, 1999, 2, 126-139.	3.9	10
25	Chemotherapeutic drugâ€induced apoptosis in human leukaemic cells is independent of the Fas (APOâ€1/CD95) receptor/ligand system. British Journal of Haematology, 1998, 101, 539-547.	2.5	67